Li Yawen,Zhu Zhu,Wang Jinhu,et al.Research advances of artificial intelligence in the diagnosis and treatment of neuroblastoma[J].Journal of Clinical Pediatric Surgery,2025,(04):392-395.[doi:10.3760/cma.j.cn101785-202307027-018]
Click Copy

Research advances of artificial intelligence in the diagnosis and treatment of neuroblastoma

References:

[1] 中国抗癌协会小儿肿瘤专业委员会,中华医学会小儿外科学分会肿瘤学组.儿童神经母细胞瘤诊疗专家共识CCCG-NB-2021方案[J].中华小儿外科杂志,2022,43(7):588-598.DOI:10.3760/cma.j.cn421158-20211227-00638. Pediatric Oncology Committee,Chinese Anti-Cancer Association,Oncology Group,Chinese Association of Pediatric Surgeons. Expert consensus on diagnosing and treating of neuroblastoma in children:CCCG-NB-2021 regimen[J].Chin J Pediatr Surg,2022,43(7): 588-598. DOI:10.3760/cma.j.cn421158-20211227-00638.
[2] London WB,Castel V,Monclair T,et al.Clinical and biologic features predictive of survival after relapse of neuroblastoma:a report from the International Neuroblastoma Risk Group project[J].J Clin Oncol,2011,29(24):3286-3292.DOI:10.1200/JCO.2010.34.3392.
[3] 晏旭东.人工智能的发展历程和应用简介[J].中国科技纵横,2019(22):65-66. Yan XD.Introduction to the development history and applications of artificial intelligence[J].China Sci Technol Overv,2019(22):65-66.
[4] Esteva A,Robicquet A,Ramsundar B,et al.A guide to deep learning in healthcare[J].Nat Med,2019,25(1):24-29.DOI:10.1038/s41591-018-0316-z.
[5] Sertel O,Kong J,Shimada H,et al.Computer-aided prognosis of neuroblastoma on whole-slide images:classification of stromal development[J].Pattern Recognit,2009,42(6):1093-1103.DOI:10.1016/j.patcog.2008.08.027.
[6] Kong J,Sertel O,Shimada H,et al.Computer-aided evaluation of neuroblastoma on whole-slide histology images:classifying grade of neuroblastic differentiation[J].Pattern Recognit,2009,42(6):1080-1092.DOI:10.1016/j.patcog.2008.10.035.
[7] Homeyer A,Schenk A,Arlt J,et al.Practical quantification of necrosis in histological whole-slide images[J].Comput Med Imaging Graph,2013,37(4):313-322.DOI:10.1016/j.compmedimag.2013.05.002.
[8] Zormpas-Petridis K,Noguera R,Ivankovic DK,et al.SuperHistopath:a deep learning pipeline for mapping tumor heterogeneity on low-resolution whole-slide digital histopathology images[J].Front Oncol,2021,10:586292.DOI:10.3389/fonc.2020.586292.
[9] Veiga-Canuto D,Cerdà-Alberich L,Sangüesa Nebot C,et al.Co-mparative multicentric evaluation of Inter-Observer variability in manual and automatic segmentation of neuroblastic tumors in magnetic resonance images[J].Cancers (Basel),2022,14(15):3648.DOI:10.3390/cancers14153648.
[10] 李金男,王威亚,梁冬妮,等.INSS和INRGSS分期评估神经母细胞瘤预后的临床价值[J].四川大学学报(医学版),2014,45(4):720-723.DOI:10.13464/j.scuxbyxb.2014.04.038. Li JN,Wang WY,Liang DN,et al.Clinical values of INSS and INRGSS staging in assessing the prognosis of neuroblastoma[J].J Sichuan Univ (Med Sci),2014,45(4):720-723.DOI:10.13464/j.scuxbyxb.2014.04.038.
[11] Gheisari S,Catchpoole DR,Charlton A,et al.Convolutional deep belief network with feature encoding for classification of neuroblastoma histological images[J].J Pathol Inform,2018,9:17.DOI:10.4103/jpi.jpi_73_17.
[12] Liu YH,Yin MZ,Sun SL.DetexNet:accurately diagnosing frequent and challenging pediatric malignant tumors[J].IEEE Trans Med Imaging,2021,40(1):395-404.DOI:10.1109/TMI.2020.3027547.
[13] Delli Priscoli M,Memmolo P,Ciaparrone G,et al.Neuroblastoma cells classification through learning approaches by direct analysis of digital holograms[J].IEEE J Sel Top Quantum Electron,2021,27(5):1-9.DOI:10.1109/jstqe.2021.3059532.
[14] Park A,Nam S.Deep learning for stage prediction in neuroblastoma using gene expression data[J].Genomics Inform,2019,17(3):e30.DOI:10.5808/GI.2019.17.3.e30.
[15] Cohn SL,Pearson ADJ,London WB,et al.The international neuroblastoma risk group (INRG) classification system:an INRG task force report[J].J Clin Oncol,2009,27(2):289-297.DOI:10.1200/JCO.2008.16.6785.
[16] Bussola N,Papa B,Melaiu O,et al.Quantification of the immune content in neuroblastoma:deep learning and topological data analysis in digital pathology[J].Int J Mol Sci,2021,22(16):8804.DOI:10.3390/ijms22168804.
[17] Stoks M,Vieco-Martí I,Noguera I,et al.Digital image analysis workflows for evaluation of cell behavior and tumor microenvironment to aid therapeutic assessment in high-risk neuroblastoma[J].Comput Biol Med,2023,164:107364.DOI:10.1016/j.compbiomed.2023.107364.
[18] Su ZG,Lu HH,Wu Y,et al.Predicting potential lncRNA biomarkers for lung cancer and neuroblastoma based on an ensemble of a deep neural network and LightGBM[J].Front Genet,2023,14:1238095.DOI:10.3389/fgene.2023.12380n10.3389/fonc.2021.653863.
[19] Ramesh S,Michael D,Liu L,et al.Predicting response to chemotherapy in neuroblastoma using deep learning:a report from the International Neuroblastoma Risk Group[J].J Clin Oncol,2021,39(S15):10039.DOI:10.1200/JCO.2021.39.15_suppl.10039.
[20] Feng Y,Wang XL,Zhang J.A heterogeneous ensemble learning method for neuroblastoma survival prediction[J].IEEE J Biomed Health Inform,2022,26(4):1472-1483.DOI:10.1109/jbhi.2021.3073056.
[21] Tranchevent LC,Azuaje F,Rajapakse JC.A deep neural network approach to predicting clinical outcomes of neuroblastoma patients[J].BMC Med Genomics,2019,12(Suppl 8):178.DOI:10.1186/s12920-019-0628-y.
[22] Wang CH,Lue W,Kaalia R,et al.Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma[J].Sci Rep,2022,12(1):15425.DOI:10.1038/s41598-022-19019-5.
[23] Liu GB,Poon M,Zapala MA,et al.Incorporating radiomics into machine learning models to predict outcomes of neuroblastoma[J].J Digit Imaging,2022,35(3):605-612.DOI:10.1007/s10278-022-00607-w.
[24] Pereira T,Silva F,Claro P,et al.A random forest-based classifier for MYCN status prediction in neuroblastoma using CT images[J].Annu Int Conf IEEE Eng Med Biol Soc,2022,2022:3854-3857.DOI:10.1109/embc48229.2022.9871349.
[25] Ahmed AA,Abouzid M,Kaczmarek E.Deep learning approaches in histopathology[J].Cancers (Basel),2022,14(21):5264.DOI:10.3390/cancers14215264.

Memo

收稿日期:2023-7-17。
基金项目:国家自然科学基金区域联合基金重点项目(U20A20137)
通讯作者:龚方戚,Email:gongfangqi@zju.edu.cn

Last Update: 2025-04-28