Li Yawen,Zhu Zhu,Wang Jinhu,et al.Research advances of artificial intelligence in the diagnosis and treatment of neuroblastoma[J].Journal of Clinical Pediatric Surgery,2025,(04):392-395.[doi:10.3760/cma.j.cn101785-202307027-018]
Research advances of artificial intelligence in the diagnosis and treatment of neuroblastoma
- Keywords:
- Neuroblastoma; Diagnosis; Therapy; Artificial Intelligence; Machine Learning; Deep Learning
- Abstract:
- As the most common extracranial solid tumor in children,neuroblastoma is a malignant tumor with a low overall survival rate and a poor clinical prognosis.With rapid advancements of computer technology,artificial intelligence (AI) has made significant breakthroughs in the fields of disease diagnosis and imaging medicine.This review summarized the applications and researches of AI in neuroblastoma,such as early diagnosis,classification,staging and prognostic prediction.It also discussed the current challenges and future prospects of AI applications in clinical practices.
References:
[1] 中国抗癌协会小儿肿瘤专业委员会,中华医学会小儿外科学分会肿瘤学组.儿童神经母细胞瘤诊疗专家共识CCCG-NB-2021方案[J].中华小儿外科杂志,2022,43(7):588-598.DOI:10.3760/cma.j.cn421158-20211227-00638. Pediatric Oncology Committee,Chinese Anti-Cancer Association,Oncology Group,Chinese Association of Pediatric Surgeons. Expert consensus on diagnosing and treating of neuroblastoma in children:CCCG-NB-2021 regimen[J].Chin J Pediatr Surg,2022,43(7): 588-598. DOI:10.3760/cma.j.cn421158-20211227-00638.
[2] London WB,Castel V,Monclair T,et al.Clinical and biologic features predictive of survival after relapse of neuroblastoma:a report from the International Neuroblastoma Risk Group project[J].J Clin Oncol,2011,29(24):3286-3292.DOI:10.1200/JCO.2010.34.3392.
[3] 晏旭东.人工智能的发展历程和应用简介[J].中国科技纵横,2019(22):65-66. Yan XD.Introduction to the development history and applications of artificial intelligence[J].China Sci Technol Overv,2019(22):65-66.
[4] Esteva A,Robicquet A,Ramsundar B,et al.A guide to deep learning in healthcare[J].Nat Med,2019,25(1):24-29.DOI:10.1038/s41591-018-0316-z.
[5] Sertel O,Kong J,Shimada H,et al.Computer-aided prognosis of neuroblastoma on whole-slide images:classification of stromal development[J].Pattern Recognit,2009,42(6):1093-1103.DOI:10.1016/j.patcog.2008.08.027.
[6] Kong J,Sertel O,Shimada H,et al.Computer-aided evaluation of neuroblastoma on whole-slide histology images:classifying grade of neuroblastic differentiation[J].Pattern Recognit,2009,42(6):1080-1092.DOI:10.1016/j.patcog.2008.10.035.
[7] Homeyer A,Schenk A,Arlt J,et al.Practical quantification of necrosis in histological whole-slide images[J].Comput Med Imaging Graph,2013,37(4):313-322.DOI:10.1016/j.compmedimag.2013.05.002.
[8] Zormpas-Petridis K,Noguera R,Ivankovic DK,et al.SuperHistopath:a deep learning pipeline for mapping tumor heterogeneity on low-resolution whole-slide digital histopathology images[J].Front Oncol,2021,10:586292.DOI:10.3389/fonc.2020.586292.
[9] Veiga-Canuto D,Cerdà-Alberich L,Sangüesa Nebot C,et al.Co-mparative multicentric evaluation of Inter-Observer variability in manual and automatic segmentation of neuroblastic tumors in magnetic resonance images[J].Cancers (Basel),2022,14(15):3648.DOI:10.3390/cancers14153648.
[10] 李金男,王威亚,梁冬妮,等.INSS和INRGSS分期评估神经母细胞瘤预后的临床价值[J].四川大学学报(医学版),2014,45(4):720-723.DOI:10.13464/j.scuxbyxb.2014.04.038. Li JN,Wang WY,Liang DN,et al.Clinical values of INSS and INRGSS staging in assessing the prognosis of neuroblastoma[J].J Sichuan Univ (Med Sci),2014,45(4):720-723.DOI:10.13464/j.scuxbyxb.2014.04.038.
[11] Gheisari S,Catchpoole DR,Charlton A,et al.Convolutional deep belief network with feature encoding for classification of neuroblastoma histological images[J].J Pathol Inform,2018,9:17.DOI:10.4103/jpi.jpi_73_17.
[12] Liu YH,Yin MZ,Sun SL.DetexNet:accurately diagnosing frequent and challenging pediatric malignant tumors[J].IEEE Trans Med Imaging,2021,40(1):395-404.DOI:10.1109/TMI.2020.3027547.
[13] Delli Priscoli M,Memmolo P,Ciaparrone G,et al.Neuroblastoma cells classification through learning approaches by direct analysis of digital holograms[J].IEEE J Sel Top Quantum Electron,2021,27(5):1-9.DOI:10.1109/jstqe.2021.3059532.
[14] Park A,Nam S.Deep learning for stage prediction in neuroblastoma using gene expression data[J].Genomics Inform,2019,17(3):e30.DOI:10.5808/GI.2019.17.3.e30.
[15] Cohn SL,Pearson ADJ,London WB,et al.The international neuroblastoma risk group (INRG) classification system:an INRG task force report[J].J Clin Oncol,2009,27(2):289-297.DOI:10.1200/JCO.2008.16.6785.
[16] Bussola N,Papa B,Melaiu O,et al.Quantification of the immune content in neuroblastoma:deep learning and topological data analysis in digital pathology[J].Int J Mol Sci,2021,22(16):8804.DOI:10.3390/ijms22168804.
[17] Stoks M,Vieco-Martí I,Noguera I,et al.Digital image analysis workflows for evaluation of cell behavior and tumor microenvironment to aid therapeutic assessment in high-risk neuroblastoma[J].Comput Biol Med,2023,164:107364.DOI:10.1016/j.compbiomed.2023.107364.
[18] Su ZG,Lu HH,Wu Y,et al.Predicting potential lncRNA biomarkers for lung cancer and neuroblastoma based on an ensemble of a deep neural network and LightGBM[J].Front Genet,2023,14:1238095.DOI:10.3389/fgene.2023.12380n10.3389/fonc.2021.653863.
[19] Ramesh S,Michael D,Liu L,et al.Predicting response to chemotherapy in neuroblastoma using deep learning:a report from the International Neuroblastoma Risk Group[J].J Clin Oncol,2021,39(S15):10039.DOI:10.1200/JCO.2021.39.15_suppl.10039.
[20] Feng Y,Wang XL,Zhang J.A heterogeneous ensemble learning method for neuroblastoma survival prediction[J].IEEE J Biomed Health Inform,2022,26(4):1472-1483.DOI:10.1109/jbhi.2021.3073056.
[21] Tranchevent LC,Azuaje F,Rajapakse JC.A deep neural network approach to predicting clinical outcomes of neuroblastoma patients[J].BMC Med Genomics,2019,12(Suppl 8):178.DOI:10.1186/s12920-019-0628-y.
[22] Wang CH,Lue W,Kaalia R,et al.Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma[J].Sci Rep,2022,12(1):15425.DOI:10.1038/s41598-022-19019-5.
[23] Liu GB,Poon M,Zapala MA,et al.Incorporating radiomics into machine learning models to predict outcomes of neuroblastoma[J].J Digit Imaging,2022,35(3):605-612.DOI:10.1007/s10278-022-00607-w.
[24] Pereira T,Silva F,Claro P,et al.A random forest-based classifier for MYCN status prediction in neuroblastoma using CT images[J].Annu Int Conf IEEE Eng Med Biol Soc,2022,2022:3854-3857.DOI:10.1109/embc48229.2022.9871349.
[25] Ahmed AA,Abouzid M,Kaczmarek E.Deep learning approaches in histopathology[J].Cancers (Basel),2022,14(21):5264.DOI:10.3390/cancers14215264.
Memo
收稿日期:2023-7-17。
基金项目:国家自然科学基金区域联合基金重点项目(U20A20137)
通讯作者:龚方戚,Email:gongfangqi@zju.edu.cn