Zhu Zhongxian,Tang Weibing.Recent advances and future prospects of basic researches on congenital anorectal malformations[J].Journal of Clinical Pediatric Surgery,,21():1006-1011.[doi:10.3760/cma.j.cn101785-202210017-002]
Click Copy

Recent advances and future prospects of basic researches on congenital anorectal malformations

References:

[1] Cuschieri A, EUROCAT Working Group.Descriptive epidemiology of isolated anal anomalies:a survey of 4.6 million births in Europe[J].Am J Med Genet, 2001, 103(3):207-215.DOI:10.1002/ajmg.1532.abs.
[2] Tourneux F.On the early development of the cloaca, the genital tubercles and the anus in sheep embryos, including some remarks on the development of the prostatic glands[J].J Anat Physiol, 1888, 24:503-517.
[3] Retterer E.Sur 1’origin et de 1’evolution de la region Ano-genitale des mammiferes[J].J Anat Physiol, 1890, 26:126-210.
[4] van der Putte SC.Normal and abnormal development of the anorectum[J].J Pediatr Surg, 1986, 21(5):434-440.DOI:10.1016/S0022-3468(86)80515-2.
[5] Kluth D, Hillen M, Lambrecht W.The principles of normal and abnormal hindgut development[J].J Pediatr Surg, 1995, 30(8):1143-1147.DOI:10.1016/0022-3468(95)90007-1.
[6] Huang YC, Chen F, Li X.Clarification of mammalian cloacal morphogenesis using high-resolution episcopic microscopy[J].Dev Biol, 2016, 409(1):106-113.DOI:10.1016/j.ydbio.2015.10.018.
[7] Bill AH Jr, Johnson RJ.Failure of migration of the rectal opening as the cause for most cases of imperforate anus[J].Surg Gynecol Obstet, 1958, 106(6):643-651.
[8] Gans SL, Friedman NB.Some new concepts in the embryology, anatomy, physiology and surgical correction of imperforate anus[J].West J Surg Obstet Gynecol, 1961, 69:34-37.
[9] Gluecksohn-Schoenheimer S.The morphological manifestations of a dominant mutation in mice affecting tail and urogenital system[J].Genetics, 1943, 28(4):341-348.DOI:10.1093/genetics/28.4.341.
[10] Thompson DJ, Molello JA, Strebing RJ, et al.Teratogenicity of adriamycin and daunomycin in the rat and rabbit[J].Teratology, 1978, 17(2):151-157.DOI:10.1002/tera.1420170207.
[11] Diez-Pardo JA, Baoquan Q, Navarro C, et al.A new rodent experimental model of esophageal atresia and tracheoesophageal fistula:preliminary report[J].J Pediatr Surg, 1996, 31(4):498-502.DOI:10.1016/S0022-3468(96)90482-0.
[12] Hashimoto R, Nagaya M, Ishiguro Y, et al.Relationship of the fistulas to the rectum and genitourinary tract in mouse fetuses with high anorectal malformations induced by all-trans retinoic acid[J].Pediatr Surg Int, 2002, 18(8):723-727.DOI:10.1007/s00383-002-0874-4.
[13] Sasaki Y, Iwai N, Tsuda T, et al.Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryo with anorectal malformations[J].J Pediatr Surg, 2004, 39(2):170-173.DOI:10.1016/j.jpedsurg.2003.10.009.
[14] Arana J, Villanueva A, Guarch R, et al.Anorectal atresia.An experimental model in the rat[J].Eur J Pediatr Surg, 2001, 11(3):192-195.DOI:10.1055/s-2001-15489.
[15] Yuan ZW, Lui VCH, Tam PKH.Deficient motor innervation of the sphincter mechanism in fetal rats with anorectal malformation:a quantitative study by fluorogold retrograde tracing[J].J Pediatr Surg, 2003, 38(9):1383-1388.DOI:10.1016/S0022-3468(03)00401-9.
[16] Bai YZ, Chen H, Yuan ZW, et al.Normal and abnormal embryonic development of the anorectum in rats[J].J Pediatr Surg, 2004, 39(4):587-590.DOI:10.1016/j.jpedsurg.2003.12.002.
[17] Kondo T, Dollé P, Zákány J, et al.Function of posterior HoxD genes in the morphogenesis of the anal sphincter[J].Development, 1996, 122(9):2651-2659.DOI:10.1242/dev.122.9.2651.
[18] Warot X, Fromental-Ramain C, Fraulob V, et al.Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts[J].Development, 1997, 124(23):4781-4791.DOI:10.1242/dev.124.23.4781.
[19] Mo R, Kim JH, Zhang JR, et al.Anorectal malformations caused by defects in sonic hedgehog signaling[J].Am J Pathol, 2001, 159(2):765-774.DOI:10.1016/S0002-9440(10)61747-6.
[20] Fairbanks TJ, De Langhe S, Sala FG, et al.Fibroblast growth factor 10(Fgf10) invalidation results in anorectal malformation in mice[J].J Pediatr Surg, 2004, 39(3):360-365.DOI:10.1016/j.jpedsurg.2003.11.034.
[21] Tai CC, Sala FG, Ford HR, et al.Wnt5a knock-out mouse as a new model of anorectal malformation[J].J Surg Res, 2009, 156(2):278-282.DOI:10.1016/j.jss.2009.03.087.
[22] Guo CS, Sun Y, Guo CM, et al.Dkk1 in the peri-cloaca mesenchyme regulates formation of anorectal and genitourinary tracts[J].Dev Biol, 2014, 385(1):41-51.DOI:10.1016/j.ydbio.2013.10.016.
[23] Garcia-Barceló MM, Chi-Hang Lui V, Miao XP, et al.Mutational analysis of SHH and GLI3 in anorectal malformations[J].Birth Defects Res A Clin Mol Teratol, 2008, 82(9):644-648.DOI:10.1002/bdra.20482.
[24] Carter TC, Kay DM, Browne ML, et al.Anorectal atresia and variants at predicted regulatory sites in candidate genes[J].Ann Hum Genet, 2013, 77(1):31-46.DOI:10.1111/j.1469-1809.2012.00734.x.
[25] Krüger V, Khoshvaghti M, Reutter H, et al.Investigation of FGF10 as a candidate gene in patients with anorectal malformations and exstrophy of the cloaca[J].Pediatr Surg Int, 2008, 24(8):893-897.DOI:10.1007/s00383-008-2193-x.
[26] Draaken M, Prins W, Zeidler C, et al.Involvement of the WNT and FGF signaling pathways in non-isolated anorectal malformations:sequencing analysis of WNT3A, WNT5A, WNT11, DACT1, FGF10, FGFR2 and the T gene[J].Int J Mol Med, 2012, 30(6):1459-1464.DOI:10.3892/ijmm.2012.1124.
[27] Zhang T, Tang XB, Wang LL, et al.Mutations and down-regulation of CDX1 in children with anorectal malformations[J].Int J Med Sci, 2013, 10(2):191-197.DOI:10.7150/ijms.4929.
[28] Wu TT, Tsai TW, Chang H, et al.Polymorphisms of the RET gene in Hirschsprung disease, anorectal malformation and intestinal pseudo-obstruction in Taiwan[J].J Formos Med Assoc, 2010, 109(1):32-38.DOI:10.1016/S0929-6646(10)60019-8.
[29] Schramm C, Draaken M, Tewes G, et al.Autosomal-dominant non-syndromic anal atresia:sequencing of candidate genes, array-based molecular karyotyping, and review of the literature[J].Eur J Pediatr, 2011, 170(6):741-746.DOI:10.1007/s00431-010-1332-2.
[30] Moore SW, Zaahl MG.Association of endothelin-β receptor (EDNRB) gene variants in anorectal malformations[J].J Pediatr Surg, 2007, 42(7):1266-1270.DOI:10.1016/j.jpedsurg.2007.02.019.
[31] Wong EHM, Cui L, Ng CL, et al.Genome-wide copy number variation study in anorectal malformations[J].Hum Mol Genet, 2013, 22(3):621-631.DOI:10.1093/hmg/dds451.
[32] Schramm C, Draaken M, Bartels E, et al.De novo microduplication at 22q11.21 in a patient with VACTERL association[J].Eur J Med Genet, 2011, 54(1):9-13.DOI:10.1016/j.ejmg.2010.09.001.
[33] Dworschak GC, Draaken M, Marcelis C, et al.De novo 13q deletions in two patients with mild anorectal malformations as part of VATER/VACTERL and VATER/VACTERL-like association and analysis of EFNB2 in patients with anorectal malformations[J].Am J Med Genet A, 2013, 161A(12):3035-3041.DOI:10.1002/ajmg.a.36153.
[34] Baudisch F, Draaken M, Bartels E, et al.CNV analysis in monozygotic twin pairs discordant for urorectal malformations[J].Twin Res Hum Genet, 2013, 16(4):802-807.DOI:10.1017/thg.2013.29.
[35] Hilger A, Schramm C, Pennimpede T, et al.De novo microduplications at 1q41, 2q37.3, and 8q24.3 in patients with VATER/VACTERL association[J].Eur J Hum Genet, 2013, 21(12):1377-1382.DOI:10.1038/ejhg.2013.58.
[36] Zhu ZX, Peng L, Chen GL, et al.Mutations of MYH14 are associated to anorectal malformations with recto-perineal fistulas in a small subset of Chinese population[J].Clin Genet, 2017, 92(5):503-509.DOI:10.1111/cge.12993.
[37] Huang YL, Zhang P, Zheng S, et al.Hypermethylation of SHH in the pathogenesis of congenital anorectal malformations[J].J Pediatr Surg, 2014, 49(9):1400-1404.DOI:10.1016/j.jpedsurg.2014.03.007.
[38] Xiao H, Huang R, Diao M, et al.Integrative analysis of microRNA and mRNA expression profiles in fetal rat model with anorectal malformation[J].Peer J, 2018, 6:e5774.DOI:10.7717/peerj.5774.
[39] Xiao H, Huang R, Chen L, et al.Integrating lncRNAs and mRNAs expression profiles in terminal hindgut of fetal rats with anorectal malformations[J].Pediatr Surg Int, 2018, 34(9):971-982.DOI:10.1007/s00383-018-4311-8.
[40] Long CY, Tang XB, Wang WL, et al.Microarray analysis of miRNAs during hindgut development in rat embryos with ethylenethiourea?induced anorectal malformations[J].Int J Mol Med, 2018, 42(5):2363-2372.DOI:10.3892/ijmm.2018.3809.
[41] Li SY, Wang CY, Xiao YX, et al.RNA-seq profiling of circular RNAs during development of hindgut in rat embryos with ethylenethiourea-induced anorectal malformations[J].Front Genet, 2021, 12:605015.DOI:10.3389/fgene.2021.605015.
[42] Long CY, Xiao YX, Li SY, et al.Upregulation of miR-92a-2-5p potentially contribute to anorectal malformations by inhibiting proliferation and enhancing apoptosis via PRKCA/β-catenin[J].Biomed Pharmacother, 2020, 127:110117.DOI:10.1016/j.biopha.2020.110117.
[43] Qu Y, Liu D, Jia HM, et al.Circular RNA rno_circ_0004002 regulates cell proliferation, apoptosis, and epithelial-mesenchymal transition through targeting miR-342-5p and Wnt3a in anorectal malformations[J].J Cell Biochem, 2019, 120(9):15483-15493.DOI:10.1002/jcb.28814.
[44] Liu D, Qu Y, Cao ZN, et al.Rno_circ_0005139 regulates apoptosis by targeting Wnt5a in rat anorectal malformations[J].World J Gastroenterol, 2020, 26(29):4272-4287.DOI:10.3748/wjg.v26.i29.4272.
[45] Yao ZY, Yuan ZW, Bai YZ, et al.Altered mRNA and lncRNA expression profiles in the striated muscle complex of anorectal malformation rats[J].Pediatr Surg Int, 2020, 36(11):1287-1297.DOI:10.1007/s00383-020-04741-w.
[46] Jin SG, Wang JX, Chen H, et al.Differential miRNA expression analysis during late stage terminal hindgut development in fetal rats[J].J Pediatr Surg, 2017, 52(9):1516-1519.DOI:10.1016/j.jpedsurg.2017.02.015.
[47] Mattiske D, Behringer RR, Overbeek PA, et al.A novel long non-coding RNA, Leat1, causes reduced anogenital distance and fertility in female mice[J].Differentiation, 2020, 112:1-6.DOI:10.1016/j.diff.2019.10.007.
[48] Isaacson D, Shen J, Overland M, et al.Three-dimensional imaging of the developing human fetal urogenital-genital tract:indifferent stage to male and female differentiation[J].Differentiation, 2018, 103:14-23.DOI:10.1016/j.diff.2018.09.003.
[49] Rupaimoole R, Slack FJ.MicroRNA therapeutics:towards a new era for the management of cancer and other diseases[J].Nat Rev Drug Discov, 2017, 16(3):203-222.DOI:10.1038/nrd.2016.246.
[50] Li ZH, Rana TM.Therapeutic targeting of microRNAs:current status and future challenges[J].Nat Rev Drug Discov, 2014, 13(8):622-638.DOI:10.1038/nrd4359.

Memo

收稿日期:2022-10-12。
基金项目:国家自然科学基金青年基金项目(81901513)
通讯作者:唐维兵,Email:twbcn@njmu.edu.cn

Last Update: 1900-01-01