Qin Jinjie,He Ling.Research advances in assessing aortic coarctation by image-based computational fluid dynamics[J].Journal of Clinical Pediatric Surgery,,21():780-784.[doi:10.3760/cma.j.cn101785-202201038-014]
Research advances in assessing aortic coarctation by image-based computational fluid dynamics
- Keywords:
- Aortic Coarctation; Computational Fluid Dynamics; Wall Shear Stress; Artificial Intelligence
- Abstract:
- Aortic coarctation (CoA) refers to a narrowing of descending thoracic aorta.Various existing diagnostic parameters have indicated that single geometric phenomena such as morphological diameter or proportion fails to reflect the full view of aorta and formulate an optimal surgical plan.Although cardiac catheterization may reflect the overall hemodynamic changes of aorta,such an invasive mode is not a first clinical choice.A non-invasive mode of visually evaluating complex hemodynamic changes is urgently needed.In recent years,computational fluid dynamics (CFD) has been widely applied in vascular diseases for its highly accurate and non-invasive hemodynamic evaluation based upon medical and engineering integration.Thus it is suitable for the severity assessment and treatment guidance of CoA.Here the latest researches of CFD in CoA was summarized along with other imaging studies in CoA.
References:
[1] Mandell JG,Loke YH,Mass PN,et al.Altered hemodynamics by 4D flow cardiovascular magnetic resonance predict exercise intolerance in repaired coarctation of the aorta:an in vitro study[J].J Cardiovasc Magn Reson,2021,23(1):99.DOI:10.1186/s12968-021-00796-3.
[2] Ganigara M,Doshi A,Naimi I,et al.Preoperative physiology,imaging,and management of coarctation of aorta in children[J].Semin Cardiothorac Vasc Anesth,2019,23(4):379-386.DOI:10.1177/1089253219873004.
[3] Alvarez-Fuente M,Ayala A,Garrido-Lestache E,et al.Long-term complications after aortic coarctation stenting[J].J Am Coll Cardiol,2021,77(19):2448-2450.DOI:10.1016/j.jacc.2021.03.303.
[4] 张海波,李守军.先天性心脏病外科治疗中国专家共识(十一):主动脉缩窄与主动脉弓中断[J].中国胸心血管外科临床杂志,2020,27(11):1255-1261.DOI:10.7507/1007-4848.202008010. Zhang HB,Li SJ.Chinese expert consensus on surgical treatment of congenital heart disease (XI):coarctation of the aorta and interrupted aortic arch[J].Chinese Journal of Clinical Thoracic&Cardiovascular Surgery,2020,27(11):1255-1261.DOI:10.7507/1007-4848.202008010.
[5] Mendieta JB,Fontanarosa D,Wang J,et al.The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries[J].Biomech Model Mechanobiol,2020,19(5):1477-1490.DOI:10.1007/s10237-019-01282-7.
[6] Zhu Y,Chen R,Juan YH,et al.Clinical validation and assessment of aortic hemodynamics using computational fluid dynamics simulations from computed tomography angiography[J].Biomed Eng Online,2018,17(1):53.DOI:10.1186/s12938-018-0485-5.
[7] Zhang M,Liu J,Zhang H,et al.CTA-based non-invasive estimation of pressure gradients across a coa:a validation against cardiac catheterisation[J].J Cardiovasc Transl Res,2021,14(5):873-882.DOI:10.1007/s12265-020-10092-7.
[8] Aslan S,Mass P,Loke YH,et al.Non-invasive prediction of peak systolic pressure drop across coarctation of aorta using computational fluid dynamics[J].Annu Int Conf IEEE Eng Med Biol Soc,2020,2020:2295-2298.DOI:10.1109/EMBC44109.2020.9176461.
[9] Brüning J,Hellmeier F,Yevtushenko P,et al.Uncertainty quantification for non-invasive assessment of pressure drop across a coarctation of the aorta using CFD[J].Cardiovasc Eng Technol,2018,9(4):582-596.DOI:10.1007/s13239-018-00381-3.
[10] 吕莹,陈欣,田露,等.CT评估主动脉缩窄患儿主动脉弓发育情况[J].中国医学影像技术,2019,35(1):69-72.DOI:10.13929/j.1003-3289.201805130. Lyu Y,Chen X,Tian L,et al.CT evaluation on aortic arch development in children with coarctation of aorta[J].Chinese Journal of Medical Imaging Technology,2019,35(1):69-72.DOI:10.13929/j.1003-3289.201805130.
[11] Krupiński M,Irzyk M,Moczulski Z,et al.Morphometric evaluation of aortic coarctation and collateral circulation using computed tomography in the adult population[J].Acta Radiol,2020,61(5):605-612.DOI:10.1177/0284185119877328.
[12] Baumgartner H,Bonhoeffer P,De Groot NM,et al.ESC guidelines for the management of grown-up congenital heart disease (new version 2010)[J].Eur Heart J,2010,31(23):2915-2957.DOI:10.1093/eurheartj/ehq249.
[13] Itu L,Sharma P,Ralovich K,et al.Non-invasive hemodynamic assessment of aortic coarctation:validation with in vivo measurements[J].Ann Biomed Eng,2013,41(4):669-681.DOI:10.1007/s10439-012-0715-0.
[14] Rinaudo A,D’Ancona G,Baglini R,et al.Computational fluid dynamics simulation to evaluate aortic coarctation gradient with contrast-enhanced CT[J].Comput Methods Biomech Biomed Engin,2015,18(10):1066-1071.DOI:10.1080/10255842.2013.869321.
[15] Lu Q,Lin W,Zhang R,et al.Validation and diagnostic performance of a CFD-based non-invasive method for the diagnosis of aortic coarctation[J].Front Neuroinform,2020,14:613666.DOI:10.3389/fninf.2020.613666.
[16] Thamsen B,Yevtushenko P,Gundelwein L,et al.Synthetic database of aortic morphometry and hemodynamics:overcoming medical imaging data availability[J].IEEE Trans Med Imaging,2021,40(5):1438-1449.DOI:10.1109/TMI.2021.3057496.
[17] Fadil H,Totman JJ,Hausenloy DJ,et al.A deep learning pipeline for automatic analysis of multi-scan cardiovascular magnetic resonance[J].J Cardiovasc Magn Reson,2021,23(1):47.DOI:10.1186/s12968-020-00695-z.
[18] Schubert C,Brüning J,Goubergrits L,et al.Assessment of hemodynamic responses to exercise in aortic coarctation using MRI-ergometry in combination with computational fluid dynamics[J].Sci Rep,2020,10(1):18894.DOI:10.1038/s41598-020-75689-z.
[19] Padalino MA,Bagatin C,Bordin G,et al.Surgical repair of aortic coarctation in pediatric age:A single center two decades experience[J].J Card Surg,2019,34(5):256-265.DOI:10.1111/jocs.14019.
[20] Goubergrits L,Riesenkampff E,Yevtushenko P,et al.MRI-based computational fluid dynamics for diagnosis and treatment prediction:clinical validation study in patients with coarctation of aorta[J].J Magn Reson Imaging,2015,41(4):909-916.DOI:10.1002/jmri.24639.
[21] Meyer-Szary J,Wa?doch A,Sabiniewicz R,et al.Life-threatening complication of untreated coarctation of the aorta in a teenager solidified in a three-dimensional printed cardiovascular model[J].Cardiol J,2018,25(3):420-421.DOI:10.5603/CJ.2018.0063.
[22] Santoro G,Pizzuto A,Rizza A,et al.Transcatheter treatment of "Complex" aortic coarctation guided by printed 3D model[J].JACC Case Rep,2021,3(6):900-904.DOI:10.1016/j.jaccas.2021.04.036.
[23] 冉启仁,金鑫,吴春,等.儿童主动脉缩窄3D打印及模拟手术应用一例及文献复习[J].临床小儿外科杂志,2021,20(9):895-897.DOI:10.12260/lcxewkzz.2021.09.019. Ran QR,Jin X,Wu C,et al.Application of three-dimensional printing and simulated surgery for pediatric aortic coarctation:one case report with a literature review[J].J Clin Ped Sur,2020,20(9):895-897.DOI:10.12260/lcxewkzz.2021.09.019.
[24] Gu Y,Li Q,Lin R,et al.Prognostic model to predict postoperative adverse events in pediatric patients with aortic coarctation[J].Front Cardiovasc Med,2021,8:672627.DOI:10.3389/fcvm.2021.672627.
[25] 曾洁敏,黄萍,王红英,等.主动脉缩窄患儿术后发生血压升高的机制研究[J].中华胸心血管外科杂志,2021,37(10):579-585.DOI:10.3760/cma.j.cn112434-20210107-00003. Zeng JM,Huang P,Wang HY,et al.Mechanism of elevated blood pressure in children after surgery for CoA[J].Chinese Journal of Thoracic&Cardiovascular Surgery,2021,37(10):579-585.DOI:10.3760/cma.j.cn112434-20210107-00003.
[26] Zhao Q,Shi K,Yang ZG,et al.Predictors of aortic dilation in patients with coarctation of the aorta:evaluation with dual-source computed tomography[J].BMC Cardiovasc Disord,2018,18(1):124.DOI:10.1186/s12872-018-0863-8.
[27] Zhang X,Luo M,Fang K,et al.Analysis of the formation mechanism and occurrence possibility of Post-Stenotic Dilatation of the aorta by CFD approach[J].Comput Methods Programs Biomed,2020,194:105522.DOI:10.1016/j.cmpb.2020.105522.
[28] Corso P,Walheim J,Dillinger H,et al.Toward an accurate estimation of wall shear stress from 4D flow magnetic resonance downstream of a severe stenosis[J].Magn Reson Med,2021,86(3):1531-1543.DOI:10.1002/mrm.28795.
[29] Nordahl ER,Uthamaraj S,Dennis KD,et al.Morphological and hemodynamic changes during cerebral aneurysm growth[J].Brain Sci,2021,11(4):520.DOI:10.3390/brainsci11040520.
[30] Sun Y,Zhang B,Xia L.Effect of low wall shear stress on the morphology of endothelial cells and its evaluation indicators[J].Comput Methods Programs Biomed,2021,208:106082.DOI:10.1016/j.cmpb.2021.106082.
[31] Perinajová R,Juffermans JF,Mercado JL,et al.Assessment of turbulent blood flow and wall shear stress in aortic coarctation using image-based simulations[J].Biomed Eng Online,2021,20(1):84.DOI:10.1186/s12938-021-00921-4.
[32] Rafieianzab D,Abazari MA,Soltani M,et al.The effect of coarctation degrees on wall shear stress indices[J].Sci Rep,2021,11(1):12757.DOI:10.1038/s41598-021-92104-3.
[33] Chen Z,Zhou Y,Wang J,et al.Modeling of coarctation of aorta in human fetuses using 3D/4D fetal echocardiography and computational fluid dynamics[J].Echocardiography,2017,34(12):1858-1866.DOI:10.1111/echo.13644.
[34] Salmasi MY,Pirola S,Mahuttanatan S,et al.Geometry and flow in ascending aortic aneurysms are influenced by left ventricular outflow tract orientation:Detecting increased wall shear stress on the outer curve of proximal aortic aneurysms[J].J Thorac Cardiovasc Surg,2021,S0022-5223(21)00913-2.DOI:10.1016/j.jtcvs.2021.06.014.
Memo
收稿日期:2022-1-20。
基金项目:重庆市科卫联合医学科研项目(2020FYYX128);重庆市技术创新与应用发展专项重点项目(CSTC2021jscx-gksb-N0018)
通讯作者:何玲,Email:Heling508@sina.com