Yu Mingming,Chen Fang.Research progress of tissue engineering in pediatric urology[J].Journal of Clinical Pediatric Surgery,,19():285-291.[doi:10.3969/j.issn.1671-6353.2020.04.001]
Research progress of tissue engineering in pediatric urology
- Keywords:
- Tissue Engineering; Urinary Bladder; Urethra; Stem Cells Transplantion; Child
- CLC:
- R726.9;R691.1
- Abstract:
- Tissue engineering undergoes constant evolutions and it has achieved considerable progress in pediatric urology.However,almost all outcomes of clinical application have been unsatisfactory.Many reasons may explain a failure of clinical transformation and the most important one is that healthy animal models,employed frequently for preclinical studies,fail to accurately imitate the structures and functions of pathological tissues.For overcoming current difficulties of clinical transformation,many new research programs have emerged,including using stem cells from various sources,improving blood supply of grafts,employing new scaffolds with a controllable release of growth factors,exploring deep signaling pathways and cellular interactions.None of the methods alone can achieve final success in clinical practice.This paper reviews the progress and major dilemmas of tissue engineering in pediatric lower urinary tract and discusses their solutions.
References:
1 Ross JPJ,Keays M,Neville C,et al.Pediatric bladder augmentation-Panacea or Pandora’s box?[J].Can Urol Assoc J,2020,14(6):1-13.DOI:10.5489/cuaj.6024.
2 Stein R,Zahn K,Huck N.Current indications and techniques for the use of bowel segments in pediatric urinary tract reconstruction[J].Front Pediatr,2019,7:236.DOI:10.3389/fped.2019.00236.eCollection2019.
3 贾幸,谢华.尿道下裂阴茎下弯的组织学和手术治疗研究进展[J].临床小儿外科杂志,2019,18(9):795-799,802.DOI:10.3969/j.issn.1671-6353.2019.09.018. Jia X,Xie H.Research advances in histology and surgery of ventral penile curvature in hypospadias[J].J Clin Ped Sur,2019,18(9):795-799,802.DOI:10.3969/j.issn.1671-6353.2019.09.018.
4 Versteegden LR,de Jonge PK,IntHout J,et al.Tissue engineering of the urethra:a systematic review and meta-analysis of preclinical and clinical studies[J].Eur Urol,2017,72(4):594-606.DOI:10.1016/j.eururo.2017.03.026.
5 Sharma S,Gupta DK.Tissue Engineering and Stem Cell Therapy in Pediatric Urology[J].J Indian Assoc Pediatr Surg,2019,24(4):237-246.DOI:10.4103/jiaps.JIAPS_77_18.
6 Wang F,Song Q,Du L,et al.Development and characterization of an acellular porcine small intestine submucosa scaffold for use in corneal epithelium tissue engineering[J].Curr Eye Res,2020,45(2):134-143.DOI:10.1080/02713683.2019.1663386.
7 Zhao F,Zhou L,Liu J,et al.Construction of a vascularized bladder with autologous adipose-derived stromal vascular fraction cells combined with bladder acellular matrix via tissue engineering[J].J Tissue Eng,2019,10:2041731419891256.DOI:10.1177/2041731419891256.
8 Nguyen TP,Nguyen QV,Nguyen VH,et al.Silk fibroin-based biomaterials for biomedical applications:a review[J].Polymers (Basel),2019,11(12):E1933.DOI:10.3390/polym11121933.
9 Versteegden LR,van Kampen KA,Janke HP,et al.Tubular collagen scaffolds with radial elasticity for hollow organ regeneration[J].Acta Biomater,2017,52:1-8.DOI:10.1016/j.actbio.2017.02.005.
10 Qiu YL,Chen X,Hou YL,et al.Characterization of different biodegradable scaffolds in tissue engineering[J].Mol Med Rep,2019,19(5):4043-4056.DOI:10.3892/mmr.2019.10066.
11 Xu ZC,Zhang Q,Li H.Elastic large muscular vessel wall engineered with bone marrow-derived cells under pulsatile stimulation in a bioreactor[J].Mol Med Rep,2015,12(4):6005-6012.DOI:10.3892/mmr.2015.4147.
12 Wang DJ,Li MY,Huang WT,et al.Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model[J].Connect Tissue Res,2015,56(6):434-439.DOI:10.3109/03008207.2015.1035376.
13 Zhou Z,Yan H,Liu Y,et al.Adipose-derived stem-cell-implanted poly(ε-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model[J].Regen Med,2018,13(3):331-342.DOI:10.2217/rme-2017-0120.
14 Tan HL,Kai D,Pasbakhsh P,et al.Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers:A potential scaffold for tissue engineering[J].Colloids Surf B Biointerfaces,2019,188:110713.DOI:10.1016/j.colsurfb.2019.110713.
15 Sánchez-Pech JC,Rosales-Ibá?es R,Cauich-Rodriguez JV,et al.Design,synthesis,characterization,and cytotoxicity of PCL/PLGA scaffolds through plasma treatment in the presence of pyrrole for possible use in urethral tissue engineering[J].J Biomater Appl,2020,34(6):840-850.DOI:10.1177/0885328219882638.
16 Culenova M,Ziaran S,Danisovic L.Cells involved in urethral tissue engineering:systematic review[J].Cell Transplant,2019,28(9-10):1106-1115.DOI:10.1177/0963689719854363.
17 Xia D,Yang Q,Fung KM,et al.Immunomodulatory response of layered small intestinal submucosa in a rat bladder regeneration model[J].J Biomed Mater Res B Appl Biomater,2019,107(6):1960-1969.DOI:10.1002/jbm.b.34289.
18 Wang C,Chen C,Guo M,et al.Stretchable collagen-coated polyurethane-urea hydrogel seeded with bladder smooth muscle cells for urethral defect repair in a rabbit model[J].J Mater Sci Mater Med,2019,30(12):135.DOI:10.1007/s10856-019-6342-7.
19 Lv X,Feng C,Liu Y,et al.A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction[J].Theranostics,2018,8(11):3153-3163.DOI:10.7150/thno.22080.
20 Pokrywczynska M,Jundzill A,Rasmus M,et al.Understanding the role of mesenchymal stem cells in urinary bladder regeneration-a preclinical study on a porcine model[J].Stem Cell Res Ther,2018,9(1):328.DOI:10.1186/s13287-018-1070-3.
21 Atala A,Bauer SB,Soker S,et al.Tissue-engineered autologous bladders for patients needing cystoplasty[J].Lancet,2006,367(9518):1241-1246.DOI:10.1016/S0140-6736(06)68438-9.
22 Joseph DB,Borer JG,De Filippo RE,et al.Autologous cell seeded biodegradable scaffold for augmentation cystoplasty:phase II study in children and adolescents with spina bifida[J].J Urol,2014,191(15):1389-1395.DOI:10.1016/j.juro.2013.10.103.
23 Caione P,Boldrini R,Salerno A,et al.Bladder augmentation using acellular collagen biomatrix:a pilot experience in exstrophic patients[J].Pediatr Surg Int,2012,28(4):421-428.DOI:10.1007/s00383-012-3063-0.
24 Schaefer M,Kaiser A,Stehr M,et al.Bladder augmentation with small intestinal submucosa leads to unsatisfactory long term results[J].J Pediatr Urol,2013,9(6 Pt A):878-883.DOI:10.1016/j.jpurol.2012.12.001.
25 Zhang F,Liao L.Long-term follow-up of neurogenic bladder patients after bladder augmentation with small intestinal submucosa[J].World J Urol,2019.DOI:10.1007/s00345-019-03008-x.[Epub ahead of print]
26 Eastman R Jr,Leaf EM,Zhang D,et al.Fibroblast growth factor-10 signals development of von Brunn’s nests in the exstrophic bladder[J].Am J Physiol Renal Physiol,2010,299(5):F1094-F1110.DOI:10.1152/ajprenal.00056.2010.
27 Fossum M,Svensson J,Kratz G,et al.Autologous in vitro cultured urothelium in hypospadias repair[J].J Pediatr Urol,2007,3(1):10-18.DOI:10.1016/j.jpurol.2006.01.018.
28 Bhargava S,Patterson JM,Inman RD,et al.Tissue-engineered buccal mucosa urethroplasty-clinical outcomes[J].Eur Urol,2008,53(6):1263-1269.DOI:10.1016/j.eururo.2008.01.061.
29 Raya-Rivera A,Esquiliano DR,Yoo JJ,et al.Tissue-engineered autologous urethras for patients who need reconstruction:an observational study[J].Lancet,2011,377(9772):1175-1182.DOI:10.1016/S0140-6736(10)62354-9.
30 孙宁.关于提高尿道下裂手术技能的一些思考[J].临床小儿外科杂志,2018,17(8):561-563.DOI:10.3969/j.issn.1671-6353.2018.08.001. Sun N.Thoughts on refining surgical techniques for hypospadias[J].J Clin Ped Sur,2018,17(8):561-563.DOI:10.3969/j.issn.1671-6353.2018.08.001.
31 Lin HK,Cowan R,Moore P,et al.Characterization of neuropathic bladder smooth muscle cells in culture[J].J Urol,2004,171(3):1348-1352.DOI:10.1097/01.ju.0000108800.47594.8b.
32 Dozmorov MG,Kropp BP,Hurst RE,et al.Differentially expressed gene networks in cultured smooth muscle cells from normal and neuropathic bladder[J].J Smooth Muscle Res,2007,43(2):55-72.DOI:10.1540/jsmr.43.55.
33 Subramaniam R,Hinley J,Stahlschmidt J,et al.Tissue engineering potential of urothelial cells from diseased bladders[J].J Urol,2011,186(5):2014-2020.DOI:10.1016/j.juro.2011.07.031.
34 Laschke MW,Menger MD.Prevascularization in tissue engineering:Current concepts and future Directions[J].Biotechnol Adv,2016,34(2):112-121.DOI:10.1016/j.biotechadv.2015.12.004.
35 Utzinger U,Baggett B,Weiss JA,et al.Large-scale time series microscopy of neovessel growth during angiogenesis[J].Angiogenesis,2015,18(3):219-232.DOI:10.1007/s10456-015-9461-x.
36 Adamowicz J,Kuffel B,Van Breda SV,et al.Reconstructive urology and tissue engineering:Converging developmental paths[J].J Tissue Eng Regen Med,2019,13(3):522-533.DOI:10.1002/term.2812.
37 Horst M,Eberli D,Gobet R,et al.Tissue engineering in pediatric bladder reconstruction-the road to success[J].Front Pediatr,2019,7:91.DOI:10.3389/fped.2019.00091.
38 Mirzaii-Dizgah I,Salmanyan B.Renal function in a rat model of neurogenic bladder,effect of statins and phosphodiesterase-5 inhibitors[J].Eur Spine J,2013,22(12):2766-2769.DOI:10.1007/s00586-013-2927-x.
39 Lin D,Liu P,Wang G,et al.The distribution of Preputial vessels in different severity of rat congenital hypospadias model:imaging study using micro-computerized tomography[J].BMC Urol,2019,19(1):111.DOI:10.1186/s12894-019-0547-4.
40 Vasquez E,Cristofaro V,Lukianov S,et al.Deletion of neuropilin 2 enhances detrusor contractility following bladder outlet obstruction[J].JCI Insight,2017,2(3):e90617.DOI:10.1172/jci.insight.90617.
41 Farhat WA.Tissue engineering of the bladder-when will we get there?[J].J Urol,2014,192(4):1021-1022.DOI:10.1016/j.juro.2014.07.079.
42 Iannaccone PM,Galat V,Bury MI,et al.The utility of stem cells in pediatric urinary bladder regeneration[J].Pediatr Res,2018,83(1-2):258-266.DOI:10.1038/pr.2017.229.
43 Sharma AK,Hota PV,Matoka DJ,et al.Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films[J].Biomaterials,2010,31(24):6207-6217.DOI:10.1016/j.biomaterials.2010.04.054.
44 Sharma AK,Bury MI,Fuller NJ,et al.Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration[J].Proc Natl Acad Sci USA,2013,110(10):4003-4008.DOI:10.1073/pnas.1220764110.
45 Yudintceva NM,Nashchekina YA,Blinova MI,et al.Experimental bladder regeneration using a poly-l-lactide/silk fibroin scaffold seeded with nanoparticle-labeled allogenic bone marrow stromal cells[J].Int J Nanomedicine,2016,11:4521-4533.DOI:10.2147/IJN.S111656.
46 Zhe Z,Jun D,Yang Z,et al.Bladder acellular matrix grafts seeded with adipose-derived stem cells and incubated intraperitoneally promote the regeneration of bladder smooth muscle and nerve in arat model of bladder augmentation[J].Stem Cells Dev,2016,25(5):405-414.DOI:10.1089/scd.2015.0246.
47 Wan Q,Xiong G,Liu G,et al.Urothelium with barrier function differentiated from human urine-derived stem cells for potential use in urinary tract reconstruction[J].Stem Cell Res Ther,2018,9(1):304.DOI:10.1186/s13287-018-1035-6.
48 Jia Z,Guo H,Xie H,et al.Harvesting prevascularized smooth muscle cell sheets from common polystyrene culture dishes[J].PLoS ONE,2018,13(9):e0204677.DOI:10.1371/journal.pone.0204677.
49 Guduric V,Siadous R,Babilotte J,et al.Layer-by-layer bioassembly of poly(lactic) acid membranes loaded with coculture of HBMSCs and EPCs improves vascularization in vivo[J].J Biomed Mater Res A,2019,107(12):2629-2642.DOI:10.1002/jbm.a.36769.
50 Nguyen BB,Moriarty RA,Kamalitdinov T,et al.Collagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering[J].J Biomed Mater Res A,2017,105(4):1123-1131.DOI:10.1002/jbm.a.36008.
51 Zhou F,Zhang L,Chen L,et al.Prevascularized mesenchymal stem cell-sheets increase survival of random skin flaps in a nude mouse model[J].Am J Transl Res,2019,11(3):1403-1416.
52 Sekine H,Shimizu T,Sakaguchi K,et al.In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels[J].Nat Commun,2013,4:1399.DOI:10.1038/ncomms2406.
53 He J,Han X,Wang S,et al.Cell sheets of co-cultured BMP-2-modified bone marrow stromal cells and endothelial progenitor cells accelerate bone regeneration in vitro[J].Exp Ther Med,2019,18(5):3333-3340.DOI:10.3892/etm.2019.7982.
54 Yap KK,Yeoh GC,Morrison WA,et al.The Vascularised Chamber as an In Vivo Bioreactor[J].Trends Biotechnol,2018,36(10):1011-1024.DOI:10.1016/j.tibtech.2018.05.009.
55 Ding Y,Zhao AS,Liu T,et al.An injectable nanocomposite hydrogel for potential application of vascularization and tissue repair[J].Ann Biomed Eng,2020.DOI:10.1007/s10439-020-02471-7.[Epub ahead of print]
56 Abdullah MF,Nuge T,Andriyana A,et al.Core-shell fibers:design,roles,and controllable release strategies in tissue engineering and drug delivery[J].Polymers (Basel),2019,11(12):E2008.DOI:10.3390/polym11122008.
57 Nagase K,Nagumo Y,Kim M,et al.Local release of VEGF using fiber mats enables effective transplantation of layered cardiomyocyte sheets[J].Macromol Biosci,2017,17(8).DOI:10.1002/mabi.201700073.
58 Spiller KL,Freytes DO,Vunjak-Novakovic G.Macrophages modulate engineered human tissues for enhanced vascularization and healing[J].Ann Biomed Eng,2015,43(3):616-627.DOI:10.1007/s10439-014-1156-8.
59 Ley K.M1 means kill; M2 means heal[J].J Immunol,2017,199(7):2191-2193.DOI:10.4049/jimmunol.1701135.
60 Garg K,Pullen NA,Oskeritzian CA,et al.Macrophage functional polarization (M1/M2) in response tovarying fiber and pore dimensions of electrospun scaffolds[J].Biomaterials,2013,34(18):4439-4451.DOI:10.1016/j.biomaterials.2013.02.065.
61 Pokrywczynska M,Rasmus M,Jundzill A,et al.Mesenchymal stromal cells modulate the molecular pattern of healing process in tissue-engineered urinary bladder:the microarray data[J].Stem Cell Res Ther,2019,10(1):176.DOI:10.1186/s13287-019-1266-1.
Memo
收稿日期:2020-01-12。
基金项目:国家自然科学基金(编号:81870459)
通讯作者:陈方,Email:doctorchenfang@126.com