Mi Weiyang,Shi Hangyu.Molecular mechanisms and advances in diagnosis and treatment of craniosynostosis[J].Journal of Clinical Pediatric Surgery,,():91-96.[doi:10.3760/cma.j.cn101785-202212024-017]
Molecular mechanisms and advances in diagnosis and treatment of craniosynostosis
- Keywords:
- Craniosynostosis; Epigenetics; Molecular Mechanisms
- Abstract:
- Craniosynostosis is a congenital cranial developmental disorder characterized by the premature fusion of one or more cranial sutures during infancy.This condition can lead to secondary complications such as increased intracranial pressure,neurodevelopmental abnormalities,and neuropsychiatric disorders,resulting in impaired brain development and abnormal cranial shape.The mechanisms underlying craniosynostosis are complex and influenced by multiple factors,including genetic,epigenetic,teratogenic agents,and environmental factors.Early diagnosis of craniosynostosis often requires integrating genetic information,environmental factors,and imaging parameters.Treatment primarily involves surgery,supplemented by orthotic devices to improve outcomes through refined surgical techniques.This article reviews the molecular signaling mechanisms,epigenetic factors,and recent advancements in the diagnosis and treatment of craniosynostosis.
References:
[1] Yilmaz E, Mihci E, Nur B, et al.Recent advances in craniosynostosis[J]. Pediatr Neurol, 2019, 99:7-15.DOI:10.1016/j.pediatrneurol.2019.01.018.
[2] Lattanzi W, Barba M, Di Pietro L, et al.Genetic advances in craniosynostosis[J]. Am J Med Genet A, 2017, 173(5):1406-1429.DOI:10.1002/ajmg.a.38159.
[3] Tillman KK, H ijer J, Ramklint M, et al.Nonsyndromic craniosynostosis is associated with increased risk for psychiatric disorders[J]. Plast Reconstr Surg, 2020, 146(2):355-365.DOI:10.1097/PRS.0000000000007009.
[4] Governale LS.Craniosynostosis[J]. Pediatr Neurol, 2015, 53(5):394-401.DOI:10.1016/j.pediatrneurol.2015.07.006.
[5] Ko JM.Genetic syndromes associated with craniosynostosis[J]. J Korean Neurosurg Soc, 2016, 59(3):187-191.DOI:10.3340/jkns.2016.59.3.187.
[6] Teven CM, Farina EM, Rivas J, et al.Fibroblast growth factor (FGF) signaling in development and skeletal diseases[J]. Genes Dis, 2014, 1(2):199-213.DOI:10.1016/j.gendis.2014.09.005.
[7] Meric-Bernstam F, Bahleda R, Hierro C, et al.Futibatinib, an irreversible FGFR1-4 inhibitor, in patients with advanced solid tumors harboring FGF/FGFR aberrations:a phase I dose-expansion study[J]. Cancer Discov, 2022, 12(2):402-415.DOI:10.1158/2159-8290.CD-21-0697.
[8] Opperman LA.Cranial sutures as intramembranous bone growth sites[J]. Dev Dyn, 2000, 219(4):472-485.DOI:10.1002/1097-0177(2000)9999:9999<::AID-DVDY1073>3.0.CO;2-F.
[9] Timberlake AT, Furey CG, Choi J, et al.De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis[J]. Proc Natl Acad Sci U S A, 2017, 114(35):E7341-E7347.DOI:10.1073/pnas.1709255114.
[10] Sharma VP, Fenwick AL, Brockop MS, et al.Mutations in TCF12, encoding a basic helix-loop-helix partner of TWIST1, are a frequent cause of coronal craniosynostosis[J]. Nat Genet, 2013, 45(3):304-307.DOI:10.1038/ng.2531.
[11] Shibazaki-Yorozuya R, Wang Q, Dechow PC, et al.Changes in biomechanical strain and morphology of rat calvarial sutures and bone after Tgf-β3 inhibition of posterior interfrontal suture fusion[J]. Anat Rec (Hoboken), 2012, 295(6):928-938.DOI:10.1002/ar.22474.
[12] Zhou H, Zou SJ, Lan Y, et al.Smad7 modulates TGFβ signaling during cranial suture development to maintain suture patency[J]. J Bone Miner Res, 2014, 29(3):716-724.DOI:10.1002/jbmr.2066.
[13] Hayano S, Komatsu Y, Pan HC, et al.Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis[J]. Development, 2015, 142(7):1357-1367.DOI:10.1242/dev.118802.
[14] Adams M, Simms RJ, Abdelhamed Z, et al.A meckelin-filamin A interaction mediates ciliogenesis[J]. Hum Mol Genet, 2012, 21(6):1272-1286.DOI:10.1093/hmg/ddr557.
[15] Justice CM, Yagnik G, Kim Y, et al.A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9[J]. Nat Genet, 2012, 44(12):1360-1364.DOI:10.1038/ng.2463.
[16] Twigg SRF, Vorgia E, McGowan SJ, et al.Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis[J]. Nat Genet, 2013, 45(3):308-313.DOI:10.1038/ng.2539.
[17] Calpena E, Cuellar A, Bala K, et al.Correction:SMAD6 variants in craniosynostosis:genotype and phenotype evaluation[J]. Genet Med, 2020, 22(9):1567.DOI:10.1038/s41436-020-0886-2.
[18] Justice CM, Kim J, Kim SD, et al.A variant associated with sagittal nonsyndromic craniosynostosis alters the regulatory function of a non-coding element[J]. Am J Med Genet A, 2017, 173(11):2893-2897.DOI:10.1002/ajmg.a.38392.
[19] Qin L, Liu W, Cao HL, et al.Molecular mechanosensors in osteocytes[J]. Bone Res, 2020, 8:23.DOI:10.1038/s41413-020-0099-y.
[20] Thompson CL, McFie M, Chapple JP, et al.Polycystin-2 is required for chondrocyte mechanotransduction and traffics to the primary cilium in response to mechanical stimulation[J]. Int J Mol Sci, 2021, 22(9):4313.DOI:10.3390/ijms22094313.
[21] Katsianou MA, Adamopoulos C, Vastardis H, et al.Signaling mechanisms implicated in cranial sutures pathophysiology:Craniosynostosis[J]. BBA Clin, 2016, 6:165-176.DOI:10.1016/j.bbacli.2016.04.006.
[22] Di Pietro L, Barba M, Prampolini C, et al.GLI1 and AXIN2 are distinctive markers of human calvarial mesenchymal stromal cells in nonsyndromic craniosynostosis[J]. Int J Mol Sci, 2020, 21(12):4356.DOI:10.3390/ijms21124356.
[23] Kim YM, Lee YJ, Park JH, et al.High diagnostic yield of clinically unidentifiable syndromic growth disorders by targeted exome sequencing[J]. Clin Genet, 2017, 92(6):594-605.DOI:10.1111/cge.13038.
[24] Barreto S, González-Vázquez A, Cameron AR, et al.Identification of stiffness-induced signalling mechanisms in cells from patent and fused sutures associated with craniosynostosis[J]. Sci Rep, 2017, 7(1):11494.DOI:10.1038/s41598-017-11801-0.
[25] Dudakovic A, Camilleri ET, Xu FH, et al.Epigenetic control of skeletal development by the histone methyltransferase Ezh2[J]. J Biol Chem, 2015, 290(46):27604-27617.DOI:10.1074/jbc.M115.672345.
[26] Lakin GE, Sinkin JC, Chen R, et al.Genetic and epigenetic influences of twins on the pathogenesis of craniosynostosis:a meta-analysis[J]. Plast Reconstr Surg, 2012, 129(4):945-954.DOI:10.1097/PRS.0b013e31824422a8.
[27] Magge SN, Snyder K, Sajja A, et al.Identical twins discordant for metopic craniosynostosis:evidence of epigenetic influences[J]. J Craniofac Surg, 2017, 28(1):14-16.DOI:10.1097/SCS.0000000000003368.
[28] Shetye PR, Davidson EH, Sorkin M, et al.Evaluation of three surgical techniques for advancement of the midface in growing children with syndromic craniosynostosis[J]. Plast Reconstr Surg, 2010, 126(3):982-994.DOI:10.1097/PRS.0b013e3181e6051e.
[29] Oppenheimer AJ, Rhee ST, Goldstein SA, et al.Force-induced craniosynostosis in the murine sagittal suture[J]. Plast Reconstr Surg, 2009, 124(6):1840-1848.DOI:10.1097/PRS.0b013e3181bf806c.
[30] Oppenheimer AJ, Rhee ST, Goldstein SA, et al.Force-induced craniosynostosis via paracrine signaling in the murine sagittal suture[J]. J Craniofac Surg, 2012, 23(2):573-577.DOI:10.1097/SCS.0b013e318241db3e.
[31] Bérard A, Zhao JP, Sheehy O.Antidepressant use during pregnancy and the risk of major congenital malformations in a cohort of depressed pregnant women:an updated analysis of the Quebec Pregnancy Cohort[J]. BMJ Open, 2017, 7(1):e013372.DOI:10.1136/bmjopen-2016-013372.
[32] Maher GJ, McGowan SJ, Giannoulatou E, et al.Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes[J]. Proc Natl Acad Sci U S A, 2016, 113(9):2454-2459.DOI:10.1073/pnas.1521325113.
[33] Kajdic N, Spazzapan P, Velnar T.Craniosynostosis-recognition, clinical characteristics, and treatment[J]. Bosn J Basic Med Sci, 2018, 18(2):110-116.DOI:10.17305/bjbms.2017.2083.
[34] Pearce MS, Salotti JA, Little MP, et al.Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours:a retrospective cohort study[J]. Lancet, 2012, 380(9840):499-505.DOI:10.1016/S0140-6736(12)60815-0.
[35] Kim HJ, Roh HG, Lee IW.Craniosynostosis:updates in radiologic diagnosis[J]. J Korean Neurosurg Soc, 2016, 59(3):219-226.DOI:10.3340/jkns.2016.59.3.219.
[36] Goodall AF, Barrett A, Whitby E, et al.T2*-weighted MRI produces viable fetal "Black-Bone" contrast with significant benefits when compared to current sequences[J]. Br J Radiol, 2021, 94(1123):20200940.DOI:10.1259/bjr.20200940.
[37] de Jong G, Bijlsma E, Meulstee J, et al.Combining deep learning with 3D stereophotogrammetry for craniosynostosis diagnosis[J]. Sci Rep, 2020, 10(1):15346.DOI:10.1038/s41598-020-72143-y.
[38] Yoon JG, Hahn HM, Choi S, et al.Molecular diagnosis of craniosynostosis using targeted next-generation sequencing[J]. Neurosurgery, 2020, 87(2):294-302.DOI:10.1093/neuros/nyz470.
[39] Derderian CA, Bartlett SP.Open cranial vault remodeling:the evolving role of distraction osteogenesis[J]. J Craniofac Surg, 2012, 23(1):229-234.DOI:10.1097/SCS.0b013e318241b93a.
[40] Mitchell BT, Swanson JW, Taylor JA.A new, single-stage, distraction-mediated, cranial vault expansion technique for the multisuture deformity[J]. J Craniofac Surg, 2015, 26(6):1923-1925.DOI:10.1097/SCS.0000000000002105.
[41] Tahiri Y, Paliga JT, Bartlett SP, et al.New-onset craniosynostosis after posterior vault distraction osteogenesis[J]. J Craniofac Surg, 2015, 26(1):176-179.DOI:10.1097/SCS.0000000000001186.
[42] He DM, Genecov DG, Barcelo R.Nonunion of the external maxillary distraction in cleft lip and palate:analysis of possible reasons[J]. J Oral Maxillofac Surg, 2010, 68(10):2402-2411.DOI:10.1016/j.joms.2009.09.018.
[43] Gibson TL, Grayson BH, McCarthy JG, et al.Maxillomandibular and occlusal relationships in preadolescent patients with syndromic craniosynostosis treated by LeFort III distraction osteogenesis:10-year surgical and phenotypic stability[J]. Am J Orthod Dentofacial Orthop, 2019, 156(6):779-790.DOI:10.1016/j.ajodo.2018.12.022.
[44] Salyer KE, Hall JD.Bandeau-the focal point of frontocranial remodeling[J]. J Craniofac Surg, 1990, 1(1):18-31.DOI:10.1097/00001665-199001000-00007.
[45] Bao N, Yang B, Song YH, et al.Extensive cranioplasty for sagittal synostosis in young children by preserving cranial bone flaps adhered to the dura mater[J]. J Craniofac Surg, 2015, 26(2):368-372.DOI:10.1097/SCS.0000000000001476.
[46] Berry-Candelario J, Ridgway EB, Grondin RT, et al.Endoscope-assisted strip craniectomy and postoperative helmet therapy for treatment of craniosynostosis[J]. Neurosurg Focus, 2011, 31(2):E5.DOI:10.3171/2011.6.FOCUS1198.
[47] Mohanty A, Frank TS, Mohamed S, et al.Ultra-early synostectomy and cranial remodeling orthoses in the management of craniosynostoses[J]. Neurosurg Focus, 2021, 50(4):E8.DOI:10.3171/2021.1.FOCUS201014.
[48] Iyer RR, Ye XB, Jin QY, et al.Optimal duration of postoperative helmet therapy following endoscopic strip craniectomy for sagittal craniosynostosis[J]. J Neurosurg Pediatr, 2018, 22(6):610-615.DOI:10.3171/2018.5.PEDS184.
Memo
收稿日期:2022-12-9。
基金项目:陕西省自然科学基础研究计划(2022JM-595)
通讯作者:史航宇,Email:weyond120@163.com