Zhang Huiqiong,Jia Weijie,Yu Kai,et al.Deep learning based intelligent auscultation of heart sounds in neonates with congenital heart disease[J].Journal of Clinical Pediatric Surgery,,22():642-648.[doi:10.3760/cma.j.cn101785-202207056-008]
Click Copy

Deep learning based intelligent auscultation of heart sounds in neonates with congenital heart disease

References:

[1] van der Linde D, Konings EEM, Slager MA, et al.Birth prevalence of congenital heart disease worldwide:a systematic review and meta-analysis[J].J Am Coll Cardiol, 2011, 58(21):2241-2247.DOI:10.1016/j.jacc.2011.08.025.
[2] GBD 2017 Congenital Heart Disease Collaborators.Global, regional, and national burden of congenital heart disease, 1990-2017:a systematic analysis for the Global Burden of Disease Study 2017[J].Lancet Child Adolesc Health, 2020, 4(3):185-200.DOI:10.1016/S2352-4642(19)30402-X.
[3] Qiu YX, Jiang W, Zhang JY, et al.Using echocardiography in newborn screening for congenital heart disease may reduce missed diagnoses[J].World J Pediatr, 2022, 18(9):629-631.DOI:10.1007/s12519-022-00560-2.
[4] Pan FX, Li JB, Lou HL, et al.Geographical and socioeconomic factors influence the birth prevalence of congenital heart disease:a population-based cross-sectional study in eastern China[J].Curr Probl Cardiol, 2022, 47(11):101341.DOI:10.1016/j.cpcardiol.2022.101341.
[5] Jacobs JP, O’Brien SM, Pasquali SK, et al.Variation in outcomes for risk-stratified pediatric cardiac surgical operations:an analysis of the STS Congenital Heart Surgery Database[J].Ann Thorac Surg, 2012, 94(2):564-572.DOI:10.1016/j.athoracsur.2012.01.105.
[6] Liu XW, Xu WZ, Yu JG, et al.Screening for congenital heart defects:diversified strategies in current China[J].World J Pediatr Surg, 2019, 2(1):e000051.DOI:10.1136/wjps-2019-000051.
[7] 赵趣鸣, 刘芳, 吴琳, 等.危重先天性心脏病新生儿产科医院出院前漏诊情况分析[J].中华儿科杂志, 2017, 55(4):260-266.DOI:10.3760/cma.j.issn.0578-1310.2017.04.006. Zhao QM, Liu F, Wu L, et al.Assessment of undiagnosed critical congenital heart disease before discharge from maternity hospital[J].Chin J Pediatr, 2017, 55(4):260-266.DOI:10.3760/cma.j.issn.0578-1310.2017.04.006.
[8] Aziz S, Khan MU, Alhaisoni M, et al.Phonocardiogram signal processing for automatic diagnosis of congenital heart disorders through fusion of temporal and cepstral features[J].Sensors (Basel), 2020, 20(13):3790.DOI:10.3390/s20133790.
[9] ?lmez T, Dokur Z.Classification of heart sounds using an artificial neural network[J].Pattern Recognit Lett, 2003, 24(1/3):617-629.DOI:10.1016/S0167-8655(02)00281-7.
[10] Ari S, Hembram K, Saha G.Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier[J].Expert Syst Appl, 2010, 37(12):8019-8026.DOI:10.1016/j.eswa.2010.05.088.
[11] Ning TK, Ning J, Atanasov N, et al.A fast heart sounds detection and heart murmur classification algorithm[C]//2012 IEEE 11th International Conference on Signal Processing, Beijing, China, 2012.Piscataway, NJ:IEEE, 2012:1629-1632.DOI:10.1109/ICoSP.2012.6491892.
[12] Maknickas V, Maknickas A.Recognition of normal-abnormal phonocardiographic signals using deep convolutional neural networks and mel-frequency spectral coefficients[J].Physiol Meas, 2017, 38(8):1671-1684.DOI:10.1088/1361-6579/aa7841.
[13] Potes C, Parvaneh S, Rahman A, et al.Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds[C]//2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 2016.Piscataway, NJ:IEEE, 2016:621-624.
[14] Sahidullah M, Saha G.Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition[J].Speech Commun, 2012, 54(4):543-565.DOI:10.1016/j.specom.2011.11.004.
[15] Liu Z, Lin YT, Cao Y, et al.Swin transformer:hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021.Piscataway, NJ:IEEE, 2021:9992-10002.DOI:10.1109/ICCV48922.2021.00986.
[16] Cortes C, Mohri M, Rostamizadeh A.L2 regularization for learning kernels[EB/OL].(2012-05-09).https://doi.org/10.48550/arXiv.1205.2653.DOI:10.48550/arXiv.1205.2653.
[17] Shensa MJ.The discrete wavelet transform:wedding the a trous and Mallat algorithms[J].IEEE Trans Signal Process, 1992, 40(10):2464-2482.DOI:10.1109/78.157290.
[18] 徐玮泽, 俞凯, 徐佳俊, 等.先天性心脏病心音听诊筛查的人工智能技术应用现状[J].浙江大学学报(医学版), 2020, 49(5):548-555.DOI:10.3785/j.issn.1008-9292.2020.10.01. Xu WZ, Yu K, Xu JJ, et al.Current application status of artificial intelligence technology in cardiac auscultation screening for congenital heart disease[J].J Zhejiang Univ (Med Sci), 2020, 49(5):548-555.DOI:10.3785/j.issn.1008-9292.2020.10.01.
[19] Xu WZ, Yu K, Ye JJ, et al.Automatic pediatric congenital heart disease classification based on heart sound signal[J].Artif Intell Med, 2022, 126:102257.DOI:10.1016/j.artmed.2022.102257.
[20] Alafif T, Boulares M, Barnawi A, et al.Normal and abnormal heart rates recognition using transfer learning[C]//202012th International Conference on Knowledge and Systems Engineering (KSE), Can Tho, Vietnam, 2020.Piscataway, NJ:IEEE, 2020:275-280.DOI:10.1109/KSE50997.2020.9287514.
[21] Yang JJ, Yan K, Wang Z, et al.A novel denoising method for partial discharge signal based on improved variational mode decomposition[J].Energies, 2022, 15(21):8167.DOI:10.3390/en15218167.
[22] Eltrass AS.Novel cascade filter design of improved sparse low-rank matrix estimation and kernel adaptive filtering for ECG denoising and artifacts cancellation[J].Biomed Signal Process Control, 2022, 77:103750.DOI:10.1016/j.bspc.2022.103750.
[23] Schlüter J, Gutenbrunner G.Efficient LEAF:a faster learnable audio frontend of questionable use[C]//202230th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 2022.Piscataway, NJ:IEEE, 2022:205-208.DOI:10.23919/EUSIPCO55093.2022.9909910.

Memo

收稿日期:2022-07-29。
基金项目:国家自然科学基金面上项目(82270309);浙江省“尖兵”“领雁”研发攻关计划(2022C03087)
通讯作者:徐玮泽,Email:weizexu@zju.edu.cn

Last Update: 1900-01-01