Zhao Weihua,Zhu Guanghui.Application advances of tissue engineering and repair and reconstruction technology in pediatric surgery[J].Journal of Clinical Pediatric Surgery,,19():961-966.[doi:10.3969/j.issn.1671-6353.2020.11.001]
Application advances of tissue engineering and repair and reconstruction technology in pediatric surgery
- CLC:
- R726;R321-3
- Abstract:
- Trauma,deformity,tumor,inflammation and other diseases will lead to tissue defects in children.It brings new challenges to tissue engineering and reconstruction surgery.Over the last three decades,tissue engineering and reconstruction have made great advances in pediatric surgery.Tissue engineering has a wide range of clinical applications in skin,bone,cartilage,tendon,blood vessel,liver,kidney,bladder and nerve.Applications of various new technologies in seed cells,biomaterials and tissue construction is the developmental basis of tissue engineering and reconstruction surgery.However,clinicians should consider the particularity of children,such as continuous growth and development,gradual maturity of immune organs,revascularization of reconstructed tissues and how to achieve functional reconstruction.The ethical problems of tissue engineering and reconstruction also need to be resolved.This review summarized new advances,current challenges and coping strategies of tissue engineering and reconstruction technique in pediatric surgery.
References:
1 Langer R,Vacanti JP.Tissue engineering[J].Science,1993,260(5110):920-926.
2 Sharma P,Kumar P,Sharma R,et al.Tissue engineering:current status & futuristic scope[J].J Med Life,2019,12(3):225-229.DOI:10.25122/jml-2019-0032.
3 Geris L,Papantoniou I.The third era of tissue engineering:reversing the innovation drivers[J].Tissue Eng Part A,2019,25(11-12):821-826.DOI:10.1089/ten.TEA.2019.0064.
4 Roth CC.Urologic tissue engineering in pediatrics:from nanostructures to bladders[J].Pediatr Res,2010,67(5):509-513.DOI:10.1203/PDR.0b013e3181d35034.
5 Williams C,Guldberg RE.Tissue engineering for pediatric applications[J].Tissue Eng Part A,2016,22(3-4):195-196.DOI:10.1089/ten.TEA.2015.0514.
6 Goldaracena N,Echeverri J,Kehar M,et al.Pediatric living donor liver transplantation with large-for-size left lateral segment grafts[J].Am J Transplant,2020,20(2):504-512.DOI:10.1111/ajt.15609.
7 Kute VB,Prasad N,Shah PR,et al.Kidney exchange transplantation current status,an update and future perspectives[J].World J Transplant,2018,8(3):52-60.DOI:10.5500/wjt.v8.i3.52.
8 Chaudhuri A,Gallo A,Grimm P.Pediatric deceased donor renal transplantation:An approach to decision making I.Pediatric kidney allocation in the USA:The old and the new[J].Pediatr Transplant,2015,19(7):776-784.DOI:10.1111/petr.12582.
9 Cittadella G,de Mel A,Dee R,et al.Arterial tissue regeneration for pediatric applications:inspiration from up-to-date tissue-engineered vascular bypass grafts[J].Artif Organs,2013,37(5):423-434.DOI:10.1111/aor.12022.
10 James A,Molly S.Emerging Technologies for Tissue Engineering:From Gene Editing to Personalized Medicine[J].Tissue Engineering Part A,2019,25:688-692.DOI:10.1089/ten.TEA.2019.0026.
11 刘小林,郑灿镔.组织工程学研发的突破和修复重建外科的发展——从修复重建外科角度看组织工程研发相关问题[J].中国修复重建外科杂志,2012,26(1):1-3.DOI:CNKI:51-1372/R.20120104.1102.002. Liu XL,Zheng CB.Breakthroughs of research and development for tissue engineering and developments of reparative and reconstructive surgery:the relevant issues of research and development for tissue engineering from the perspectives of reparative and reconstructive surgery[J].Chinese Journal of Reparative and Reconstructive Surgery,2012,26(1):1-3.DOI:CNKI:51-1372/R.20120104.1102.002.
12 Liu G,David BT,Trawczynski M,et al.Advances in pluripotent stem cells:history,mechanisms,technologies,and applications[J].Stem Cell Rev Rep,2020,16(1):3-32.DOI:10.1007/s12015-019-09935-x.
13 Genova E,Cavion F,Lucafò M,et al.Induced pluripotent stem cells for therapy personalization in pediatric patients:Focus on drug-induced adverse events[J].World J Stem Cells,2019,11(12):1020-1044.DOI:10.4252/wjsc.v11.i12.1020.
14 Hayashi R,Ishikawa Y,Sasamoto Y,et al.Coordinated ocular development from human iPS cells and recovery of corneal function[J].Nature,2016,531(7594):376-380.DOI:10.1038/nature17000.
15 Kannappan R,Turner JF,Miller JM,et al.Functionally competent DNA damage-free induced pluripotent stem cell-derived cardiomyocytes for myocardial repair[J].Circulation,2019,140(6):520-522.DOI:10.1161/CIRCULATIONAHA.119.040881.
16 Ouchi R,Togo S,Kimura M,et al.Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids[J].Cell Metab,2019,30(2):374-384.DOI:10.1016/j.cmet.2019.05.007.
17 Liu G,David BT,Trawczynski M,et al.Advances in pluripotent stem cells:history,mechanisms,technologies,and applications[J].Stem Cell Rev Rep,2020,16(1):3-32.DOI:10.1007/s12015-019-09935-x.
18 Patel M,Fisher JP.Biomaterial scaffolds in pediatric tissue engineering[J].Pediatr Res,2008,63(5):497-501.DOI:10.1203/01.PDR.0b013e318165eb3e.
19 Cen L,Liu W,Cui L,et al.Collagen tissue engineering:development of novel biomaterials and applications[J].Pediatr Res,2008,63(5):492-496.DOI:10.1203/PDR.0b013e31816c5bc3.
20 Stoop R.Smart biomaterials for tissue engineering of cartilage[J].Injury,2008,39:77-87.DOI:10.1016/j.injury.2008.01.036.
21 Richards SK,Lear PA,Huskisson L,et al.Porcine dermal collagen graft in pediatric renal transplantation[J].Pediatr Transplant,2005,9(5):627-629.DOI:10.1111/j.1399-3046.2005.00312.x.
22 Ruszymah BH,Lokman BS,Asma A,et al.Pediatric auricular chondrocytes gene expression analysis in monolayer culture and engineered elastic cartilage[J].Int J Pediatr Otorhinolaryngol,2007,71(8):1225-1234.DOI:10.1016/j.ijporl.2007.04.014.
23 Guyette JP,Charest JM,Mills RW,et al.Bioengineering human myocardium on native extracellular matrix[J].Circ Res,2016,118(1):56-72.DOI:10.1161/CIRCRESAHA.115.306874.
24 Shin’oka T,Matsumura G,Hibino N,et al.Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells[J].J Thorac Cardiovasc Surg,2005,129(6):1330-1338.DOI:10.1016/j.jtcvs.2004.12.047.
25 Roh JD,Brennan MP,Lopez-Soler RI,et al.Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells:optimization of cell harvest and seeding techniques[J].J Pediatr Surg,2007,42(1):198-202.DOI:10.1016/j.jpedsurg.2006.09.054.
26 Vega SL,Kwon MY,Burdick JA.Recent advances in hydrogels for cartilage tissue engineering[J].Eur Cell Mater,2017,33:59-75.DOI:10.22203/eCM.v033a05.
27 Ruszymah BH,Chua K,Latif MA,et al.Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support[J].Int J Pediatr Otorhinolaryngol,2005,69(11):1489-1495.DOI:10.1016/j.ijporl.2005.04.026.
28 Amaral AJR,Pasparakis G.Cell membrane engineering with synthetic materials:Applications in cell spheroids,cellular glues and microtissue formation[J].Acta Biomater,2019,90:21-36.DOI:10.1016/j.actbio.2019.04.013.
29 Selden C,Fuller B.Role of bioreactor technology in tissue engineering for clinical use and therapeutic target design[J].Bioengineering (Basel),2018,5(2):E32.DOI:10.3390/bioengineering5020032.
30 Zhang Q,Hubenak J,Iyyanki T,et al.Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+ PLGA/PEG microspheres on a collagenchitosan scaffold with a flow-through vascular pedicle[J].Biomaterials,2015,73:198-213.DOI:10.1016/j.biomaterials.2015.09.024.
31 Morrison WA,Marre D,Grinsell D,et al.Creation of a large adipose tissue construct in humans using a tissue-engineering chamber:a step forward in the clinical application of soft tissueengineering[J].E Bio Medicine,2016,6:238-245.DOI:10.1016/j.ebiom.2016.03.032.
32 Parthasarathy J,Krishnamurthy R,Ostendorf A,et al.3D printing with MRI in pediatric applications[J].J Magn Reson Imaging,2020,51(6):1641-1658.DOI:10.1002/jmri.26870.
33 Choi G,Cha HJ.Recent advances in the development of nature-derived photocrosslinkable biomaterials for 3D printing in tissue engineering[J].Biomater Res,2019,23:18.DOI:10.1186/s40824-019-0168-8.
34 Yilmaz B,Tahmasebifar A,Baran ET.Bioprinting technologies in tissue engineering[J].Adv Biochem Eng Biotechnol,2020,171:279-319.DOI:10.1007/10_2019_108.
35 Lueders C,Jastram B,Hetzer R,et al.Rapid manufacturing techniques for the tissue engineering of human heart valves[J].Eur J Cardiothorac Surg,2014,46(4):593-601.DOI:10.1093/ejcts/ezt510.
36 O’Connell CD,Di Bella C,Thompson F,et al.Development of the Biopen:a handheld device for surgical printing of adipose[J].Biofabrication,2016,8(1):015019.DOI:10.1088/1758-5090/8/1/015019.
37 Di Bella C,Duchi S,O’Connell CD,et al.In situ handheld three-dimensional bioprinting for cartilage regeneration[J].J Tissue Eng Regen Med,2018,12(3):611-621.DOI:10.1002/term.2476.
38 Kizawa H,Nagao E,Shimamura M,et al.Scaffold-free 3D bioprinted human liver tissue stably maintains metabolic functions useful for drug discovery[J].Biochem Biophys Rep,2017,10:186-191.DOI:10.1016/j.bbrep.2017.04.004.
39 Cesar Colasante,Zachary Sanford,Evan Garfein,et al.Current trends in 3D printing,bioprosthetics,and tissue engineering in plastic and reconstructive surgery[J].Curr Surg Rep,2016,4(2):6.DOI:10.1007/s40137-016-0127-4.
40 Baker HB,McQuilling JP,King NM.Ethical considerations in tissue engineering research:Case studies in translation[J].Methods,2016,99:135-144.DOI:10.1016/j.ymeth.2015.08.010.
Memo
收稿日期:2020-04-03。
基金项目:湖南省发展和改革委员会2019年创新研发项目(编号:湘发改投资[2019]875号)
通讯作者:赵卫华,Email:zhaoweihua100@163.com