Xia Sanqiang,Qiu Junyin,Shi Benlong,et al.Comparison of intraoperative neurophysiological monitoring in Chiari malformation-associated scoliosis patients with or without syringomyelia[J].Journal of Clinical Pediatric Surgery,2018,17(09):659-663.
伴与不伴脊髓空洞的Chiari畸形伴脊柱侧凸患儿脊柱矫形术中神经电生理监测的差异性
- Title:
- Comparison of intraoperative neurophysiological monitoring in Chiari malformation-associated scoliosis patients with or without syringomyelia
- Keywords:
- Chiari malformation; Scoliosis; Syringomyelia; Intraoperative neurophysiological monitoring
- 文献标志码:
- A
- 摘要:
- 目的 比较伴与不伴脊髓空洞的Chiari畸形伴脊柱侧凸(Chiari malformation-associated scoliosis, CMS)患儿脊柱矫形术中神经电生理监测(intraoperative neurophysiological monitoring,IONM)的差异,探讨脊髓空洞对CMS患儿IONM监测结果的影响。方法 以2013年7月-2016年5月于我院行脊柱矫形手术的73例CMS患儿为研究对象,其中男34例,女39例,平均年龄(20.6±8.9)岁。测量并比较伴与不伴脊髓空洞的CMS患儿体感诱发电位(somatosensory evoked potentials, SSEPs)及经颅电刺激运动诱发电位(transcranial electric motor evoked potentials,TCeMEPs)的波幅和潜伏期,计算伴与不伴脊髓空洞CMS患儿异常SSEPs的比例。 结果 73例患儿中,71例(97.3%)术中成功获得SSEPs监测结果,73例(100%)成功获得TCeMEPs监测结果。伴与不伴脊髓空洞的CMS患儿之间异常SSEPs发生率无显著差异(P>0.05)。CMS患儿凹凸侧之间SSEPs和TCeMEPs波幅及潜伏期均无统计学差异(P>0.05)。伴与不伴脊髓空洞的CMS患儿之间年龄、身高、SSEPs的P37与N50潜伏期、TCeMEPs波幅及潜伏期均无统计学差异(P>0.05),而伴脊髓空洞组的主弯Cobb角显著升高、SSEPs波幅显著降低(均有P<0.05)。结论 伴有脊髓空洞的CMS患儿与不伴脊髓空洞的CMS患儿相比具有较高的侧凸Cobb角及较低的SSEPs波幅。因此,伴脊髓空洞CMS患儿侧凸的病情进展较快,且脊髓空洞对CMS患儿IONM的损害主要表现在SSEPs波幅的降低上,这需要引起脊柱外科医师的高度重视。
- Abstract:
- Objective To compare the difference of intraoperative neurophysiological monitoring (IONM) in Chiari malformation-associated scoliosis (CMS) patients with or without syringomyelia and investigate the influence of syringomyelia on IONM in surgical correction of CMS. Methods A total of 73 CMS patients were retrospectively reviewed from July 2013 to May 2015. There were 34 boys and 39 girls with an average age of 20.6±8.9 years. The latency and amplitude of somatosensory evoked potentials (SSEPs) and transcranial electric motor evoked potentials (TCeMEPs) were compared between concave and convex sides and between CMS patients with and without syringomyelia. And the percentages of abnormal SSEPs were also compared between those with and without syringomyelia. Results The values of SSEPs and TCeMEPs were successfully obtained in 71 (97.3%) and 73 (100%) patients respectively. The percentages of abnormal SSEPs showed no different between those with and without syringomyelia (28.1% vs 35.7%, P=0.745). No significant difference existed between concave and convex sides in latency and amplitude of SSEPs and TCeMEPs (P>0.05). No significant difference existed between those with and without syringomyelia in terms of age, height, P37 and N50 latencies of SSEPs, latency and amplitude of TCeMEPs (P>0.05). Those with syringomyelia had higher Cobb angle (P=0.009) and lower SSEPs amplitude (P=0.003) as compared with counterparts without syringomyelia. Conclusion IONM showed no significant difference between concave and convex sides in CMS patients. And those with syringomyelia have higher Cobb angle and lower SSEPs amplitude than counterparts without syringomyelia.
参考文献/References:
1. Zhu Z, Qiu Y, Wang B, et al. Abnormal spreading and subunit expression of junctional acetylcholine receptors of paraspinal muscles in scoliosis associated with syringomyelia[J]. Spine (Phila Pa 1976), 2007,32(22):2449-2454. DOI: 10.1097/BRS.0b013e3181573d01. 2. Cheng JC, Guo X, Sher AH, et al. Correlation between curve severity, somatosensory evoked potentials, and magnetic resonance imaging in adolescent idiopathic scoliosis[J]. Spine (Phila Pa 1976), 1999,24(16):1679-1684. DOI: 10.1097/00007632-199908150-00009. 3. Zhu Z, Yan H, Han X, et al. Radiological Features of Scoliosis in Chiari I Malformation Without Syringomyelia[J]. Spine (Phila Pa 1976), 2016,41(5):E276-281. DOI: 10.1097/BRS.0000000000001406. 4. Tubbs RS, Beckman J, Naftel RP, et al. Institutional experience with 500 cases of surgically treated pediatric Chiari malformation Type I[J]. J Neurosurg Pediatr, 2011,7(3):248-256. DOI: 10.3171/2010.12.PEDS10379. 5. Chau WW, Chu WC, Lam TP, et al. Anatomical Origin of Abnormal Somatosensory-Evoked Potential (SEP) in Adolescent Idiopathic Scoliosis With Different Curve Severity and Correlation With Cerebellar Tonsillar Level Determined by MRI[J]. Spine (Phila Pa 1976), 2016,41(10):E598-604. DOI: 10.1097/BRS.0000000000001345. 6. Moncho D, Poca MA, Minoves T, et al. Brainstem auditory and somatosensory evoked potentials in relation to clinical and neuroimaging findings in Chiari type 1 malformation[J]. J Clin Neurophysiol, 2015,32(2):130-138. DOI: 10.1097/WNP.0000000000000141. 7. Ferré Masó A, Poca MA, de la Calzada, et al. Sleep disturbance: a forgotten syndrome in patients with Chiari I malformation[J]. Neurologia, 2014,29(5):294-304. DOI: 10.1016/j.nrl.2011.01.008. 8. 邱勇. 脊柱侧弯伴发Chiari畸形或/和脊髓空洞的临床评估[J]. 中华小儿外科杂志, 2004,25(5):392-393. DOI: 10.3760/cma.j.issn.0253-3006.2004.05.002. 9. Morioka T, Kurita-Tashima S, Fujii K, et al. Somatosensory and spinal evoked potentials in patients with cervical syringomyelia[J]. Neurosurgery, 1992,30(2):218-222. DOI: 10.1227/00006123-199202000-00011. 10. Polly DW Jr, Rice K, Tamkus A. What Is the Frequency of Intraoperative Alerts During Pediatric Spinal Deformity Surgery Using Current Neuromonitoring Methodology? A Retrospective Study of 218 Surgical Procedures[J]. Neurodiagn J, 2016,56(1):17-31. DOI: 10.1080/21646821.2015.1119022. 11. Strike SA, Hassanzadeh H, Jain A, et al. Intraoperative Neuromonitoring in Pediatric and Adult Spine Deformity Surgery[J]. Clin Spine Surg, 2016. Epub. DOI: 10.1097/BSD.0000000000000388. 12. Stetkarova I, Zamecnik J, Bocek V, et al. Electrophysiological and histological changes of paraspinal muscles in adolescent idiopathic scoliosis[J]. Eur Spine J, 2016. Epub. DOI: 10.1007/s00586-016-4628-8. 13. 刘海雁, 朱泽章, 史本龙, 等. 体感诱发电位联合运动诱发电位在Chiari畸形伴脊柱侧凸后路矫形手术中的应用价值[J].中国脊柱脊髓杂志,2016,(4):299-303. DOI: 10.3969/j.issn.1004-406X.2016.04.03. Liu XY, Zhu ZZ, Shi BL, et al. Use of somatosensory evoked potentials and transcranial electric motor evoked potentials in surgical correction of scoliosis secondary to Chiari malformation[J]. Chinese Journal of Spine and Spinal Cord, 2016, (4): 299-303. DOI: 10.3969/j.issn.1004-406X.2016.04.03. 14. Devlin VJ, Anderson PA, Schwartz DM, et al. Intraoperative neurophysiologic monitoring: focus on cervical myelopathy and related issues[J]. Spine J, 2006, 6(6 Suppl): S212-224. DOI: 10.1016/j.spinee.2006.04.022. 15. Langeloo DD, Lelivelt A, Louis Journée H, et al. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: a study of 145 patients[J]. Spine (Phila Pa 1976), 2003, 28(10): 1043-1050. DOI: 10.1097/01.BRS.0000061995.75709.78. 16. Chiappa KH. Evoked Potentials in Clinical Medicine[M]. New York:Raven Press,1983.203-287. DOI: 10.1056/NEJM198205133061904. 17. Chen Z, Qiu Y, Ma W, et al. Comparison of somatosensory evoked potentials between adolescent idiopathic scoliosis and congenital scoliosis without neural axis abnormalities. Spine J. 2014,14(7):1095-1098. DOI: 10.1016/j.spinee.2013.07.465. 18. Cheng JC, Guo X, Sher AH. Posterior tibial nerve somatosensory cortical evoked potentials in adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 1998,23(3):332-337. DOI: 10.1097/00007632-199802010-00009. 19. Mahmoud M, Sadhasivam S, Salisbury S, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery[J]. Anesthesiology, 2010,112(6):1364-1373. DOI: 10.1097/ALN.0b013e3181d74f55. 20. Ashkenaze D, Mudiyam R, Boachie-Adjei O, et al. Efficacy of spinal cord monitoring in neuromuscular scoliosis [J]. Spine (Phila Pa 1976), 1993, 18(12): 1627-1633. DOI: 10.1097/00007632-199309000-00010. 21. Hammett TC, Boreham B, Quraishi NA, et al. Intraoperative spinal cord monitoring during the surgical correction of scoliosis due to cerebral palsy and other neuromuscular disorders[J]. Eur Spine J, 2013, 22(Suppl 1): S38-41. DOI: 10.1007/s00586-012-2652-x. 22. Hsu B, Cree AK, Lagopoulos J, et al. Transcranial motor-evoked potentials combined with response recording through compound muscle action potential as the sole modality of spinal cord monitoring in spinal deformity surgery[J]. Spine (Phila Pa 1976), 2008, 33(10): 1100-1106. DOI: 10.1097/BRS.0b013e31818af6ff.
相似文献/References:
[1]张网林,陈秋.持续光照与松果体切除诱导大鼠脊柱侧凸动物模型的探讨[J].临床小儿外科杂志,2008,7(02):8.
[2]张勇,张立根,张敬悌,等.SRS-22问卷在中国儿童和青少年脊柱侧凸患者中的应用[J].临床小儿外科杂志,2008,7(02):9.
[3]刘虎,孙琳,张学军.椎体-肋骨撑开术及椎体-椎体撑开术治疗早发性脊柱侧凸患儿的疗效比较[J].临床小儿外科杂志,2019,18(07):588.[doi:10.3969/j.issn.1671-6353.2019.07.014]
Liu Hu,Sun Lin,Zhang Xuejun.Efficacies of spine-rib versus spine-spine distraction for early-onset scoliosis[J].Journal of Clinical Pediatric Surgery,2019,18(09):588.[doi:10.3969/j.issn.1671-6353.2019.07.014]
[4]冯磊,张学军.儿童脊柱侧凸矫正手术中神经电生理监测方案的选择及技术难点[J].临床小儿外科杂志,2020,19(02):93.[doi:10.3969/j.issn.1671-6353.2020.02.001]
Feng Lei,Zhang Xuejun.Protocol selecting and technical dilemmas of intraoperative neurophysiological monitoring during corrective procedures for pediatric scoliosis[J].Journal of Clinical Pediatric Surgery,2020,19(09):93.[doi:10.3969/j.issn.1671-6353.2020.02.001]
[5]王树杰,任志富,何芳,等.早发性脊柱侧凸手术中神经功能监测的应用及意义探讨[J].临床小儿外科杂志,2020,19(02):120.[doi:10.3969/j.issn.1671-6353.2020.02.006]
Wang Shujie,Ren Zhifu,He Fang,et al.Effectiveness analysis of intraoperative electrophysiological monitoring for early-onset scoliosis[J].Journal of Clinical Pediatric Surgery,2020,19(09):120.[doi:10.3969/j.issn.1671-6353.2020.02.006]
[6]张百慧,叶文松,朱伟玮,等.青少年特发性脊柱侧凸矫形术后adding-on现象的研究进展[J].临床小儿外科杂志,2020,19(02):140.[doi:10.3969/j.issn.1671-6353.2020.02.010]
Zhang Baihui,Ye Wensong,Zhu Weiwei,et al.Research advances of adding-on phenomenon after operations for adolescent idiopathic scoliosis[J].Journal of Clinical Pediatric Surgery,2020,19(09):140.[doi:10.3969/j.issn.1671-6353.2020.02.010]
[7]朱伟玮,叶文松,张百慧,等.儿童腰椎滑脱伴脊柱侧凸的研究进展[J].临床小儿外科杂志,2022,21(09):886.[doi:10.3760/cma.j.cn101785-202006051-017]
Zhu Weiwei,Ye Wensong,Zhang Baihui,et al.Research advances of lumbar spondylolisthesis with scoliosis in children[J].Journal of Clinical Pediatric Surgery,2022,21(09):886.[doi:10.3760/cma.j.cn101785-202006051-017]
[8]刘万友,邱俊荫,史本龙,等.弯型对青少年特发性脊柱侧凸矫形手术中神经电生理监测的影响研究[J].临床小儿外科杂志,2022,21(10):936.[doi:10.3760/cma.j.cn101785-202203027-007]
Liu Wanyou,Qiu Junyin,Shi Benlong,et al.Impact of curve patterns on intraoperative neurophysiological monitoring during correction surgery for adolescent idiopathic scoliosis[J].Journal of Clinical Pediatric Surgery,2022,21(09):936.[doi:10.3760/cma.j.cn101785-202203027-007]
[9]侯昊,张学军,曹隽,等.漏斗胸合并脊柱侧凸的影像学特点及危险因素分析[J].临床小儿外科杂志,2023,22(06):511.[doi:10.3760/cma.j.cn101785-202211052-003]
Hou Hao,Zhang Xuejun,Cao Jun,et al.Imaging characteristics and risk factors of pectus excavatum children with scoliosis[J].Journal of Clinical Pediatric Surgery,2023,22(09):511.[doi:10.3760/cma.j.cn101785-202211052-003]
[10]郭东,罗焱中,侯昊,等.大块自体骨原位椎间植骨融合技术在儿童半椎体切除术中的应用研究[J].临床小儿外科杂志,2023,22(10):948.[doi:10.3760/cma.j.cn101785-202309009-009]
Guo Dong,Luo Yanzhong,Hou Hao,et al.Autologous bone graft in situ as anterior reconstruction after posterior hemivertebra resection for congenital kyphoscoliosis[J].Journal of Clinical Pediatric Surgery,2023,22(09):948.[doi:10.3760/cma.j.cn101785-202309009-009]