Zhan Yong,Zheng Shan.Research advances of epigenetics in biliary atresia[J].Journal of Clinical Pediatric Surgery,2021,20(11):1070-1075.[doi:10.12260/lcxewkzz.2021.11.014]
胆道闭锁的表观遗传学研究进展
- Title:
- Research advances of epigenetics in biliary atresia
- Keywords:
- Biliary Atresia; Epigenetic Research
- 分类号:
- R722;R394.3;R575
- 摘要:
- 表观遗传学研究的是在不涉及DNA序列改变的前提下,调控遗传物质表达的过程及机制。近年来研究表明,表观遗传学通过复杂的调控机制,在胆道闭锁的发生发展中起着重要作用,这为胆道闭锁的诊断、预后评估以及治疗手段带来了新的理念。本文就表观遗传学在胆道闭锁中的研究进展进行综述。
- Abstract:
- Epigenetics is the study on regulating process and mechanism of gene expression without alterations in DNA sequence. Recent researches have shown that epigenetics plays an important role in the development of biliary atresia through complex regulating mechanisms, which contributes to the diagnosis, prognosis evaluation and treatment of biliary atresia. This review summarized the latest epigenetics research in biliary atresia.
参考文献/References:
1 Govindarajan KK.Biliary atresia: Where do we stand now?[J].World J Hepatol, 2016, 8(36):1593-1601.DOI:10.4254/wjh.v8.i36.1593.
2 Asai A, Miethke A, Bezerra JA.Pathogenesis of biliary atresia:defining biology to understand clinical phenotypes[J].Nat Rev Gastroenterol Hepatol, 2015, 12(6):342-352.DOI:10.1038/nrgastro.2015.74.
3 Mack CL, Feldman AG, Sokol RJ.Clues to the etiology of bile duct injury in biliary atresia[J].Semin Liver Dis, 2012, 32(4):307-316.DOI:10.1055/s-0032-1329899.
4 Olaizola P, Lee-law PY, Arbelaiz A, et al. MicroRNAs and extracellular vesicles in cholangiopathies[J].Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B):1293-1307.DOI:10.1016/j.bbadis.2017.06.026.
5 Hand NJ, Horner AM, Master ZR, et al. MicroRNA profiling identifies miR-29 as a regulator of disease-associated pathways in experimental biliary atresia[J].J Pediatr Gastroenterol Nutr, 2012, 54(2):186-192.DOI:10.1097/MPG.0b013e318244148b.
6 Xiao Y, Wang J, Yan W, et al. Dysregulated miR-124 and miR-200 expression contribute to cholangiocyte proliferation in the cholestatic liver by targeting IL-6/STAT3 signalling[J].J Hepatol, 2015, 62(4):889-896.DOI:10.1016/j.jhep.2014.10.033.
7 Bessho K, Shanmukhappa K, Sheridan R, et al. Integrative genomics identifies candidate microRNAs for pathogenesis of experimental biliary atresia[J].BMC Syst Biol, 2013, 7:104.DOI:10.1186/1752-0509-7-104.
8 De Carvalho E, Ivantes CA, Bezerra JA.Extrahepatic biliary atresia:current concepts and future directions[J].J Pediatr (Rio J), 2007, 83(2):105-120.DOI:10.2223/JPED.1608.
9 Hsu YA, Lin CH, Lin HJ, et al. Effect of microRNA-155 on the interferon-gamma signaling pathway in biliary atresia[J].Chin J Physiol, 2016, 59(6):315-322.DOI:10.4077/cjp.2016.Bae419.
10 Zhao R, Dong R, Yang Y, et al. MicroRNA-155 modulates bile duct inflammation by targeting the suppressor of cytokine signaling 1 in biliary atresia[J].Pediatr Res, 2017, 82(6):1007-1016.DOI:10.1038/pr.2017.87.
11 Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection[J].Cell, 2007, 129(1):147-161.DOI:10.1016/j.cell.2007.03.008.
12 Diaz R, Kim JW, Hui JJ, et al. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis[J].Hum Pathol, 2008, 39(1):102-115.DOI:10.1016/j.humpath.2007.05.021.
13 Shen W, Chen G, Dong R, et al. MicroRNA-21/PTEN/Akt axis in the fibrogenesis of biliary atresia[J].J Pediatr Surg, 2014, 49(12):1738-1741.DOI:10.1016/j.jpedsurg.2014.09.009.
14 Ye Y, Li Z, Feng Q, et al. Downregulation of microRNA-145 may contribute to liver fibrosis in biliary atresia by targeting ADD3[J].PLoS One, 2017, 12(9):e0180896.DOI:10.1371/journal.pone.0180896.
15 Dong R, Zheng Y, Chen G, et al. miR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A[J].J Pediatr Gastroenterol Nutr, 2015, 60(1):84-90.DOI:10.1097/mpg.0000000000000573.
16 Xiao Y, Wang J, Chen Y, et al. Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stallate cells by activating PI3K/Akt signaling[J].Cell Signal, 2014, 26(5):925-932.DOI:10.1016/j.cellsig.2014.01.003.
17 Zhao D, Luo Y, Xia Y, et al. MicroRNA-19b Expression in Human Biliary Atresia Specimens and Its Role in BA-Related Fibrosis[J].Dig Dis Sci, 2017, 62(3):689-698.DOI:10.1007/s10620-016-4411-z.
18 Shen WJ, Dong R, Chen G, et al. microRNA-222 modulates liver fibrosis in a murine model of biliary atresia[J].Biochem Biophys Res Commun, 2014, 446(1):155-159.DOI:10.1016/j.bbrc.2014.02.065.
19 Wang JY, Li ZH, Ye M, et al. Effect of miR-29c and miR-129-5p on epithelial-mesenchymal transition in experimental biliary atresia mouse models[J].Genet Mol Res, 2016, 15(3).DOI:10.4238/gmr.15037753.
20 Zahm AM, Hand NJ, Boateng LA, et al. Circulating microRNA is a biomarker of biliary atresia[J].J Pediatr Gastroenterol Nutr, 2012, 55(4):366-369.DOI:10.1097/MPG.0b013e318264e648.
21 Goldschmidt I, Thum T, Baumann U.Circulating miR-21 and miR-29a as Markers of Disease Severity and Etiology in Cholestatic Pediatric Liver Disease[J].J Clin Med, 2016, 5(3):28.DOI:10.3390/jcm5030028.
22 Dong R, Shen Z, Zheng C, et al. Serum microRNA microarray analysis identifies miR-4429 and miR-4689 are potential diagnostic biomarkers for biliary atresia[J].Sci Rep, 2016, 6:21084.DOI:10.1038/srep21084.
23 Peng X, Yang L, Liu H, et al. Identification of Circulating MicroRNAs in Biliary Atresia by Next-Generation Sequencing[J].J Pediatr Gastroenterol Nutr, 2016, 63(5):518-523.DOI:10.1097/mpg.0000000000001194.
24 Shan Y, Shen N, Han L, et al. MicroRNA-499 Rs3746444 polymorphism and biliary atresia[J].Dig Liver Dis, 2016, 48(4):423-428.DOI:10.1016/j.dld.2015.11.014.
25 Moore LD, Le T, Fan G.DNA methylation and its basic function[J].Neuropsychopharmacology, 2013, 38(1):23-38.DOI:10.1038/npp.2012.112.
26 Dong R, Zhao R, Zheng S.Changes in epigenetic regulation of CD4+ T lymphocytesin biliary atresia[J].Pediatr Res, 2011, 70(6):555-559.DOI:10.1203/PDR.0b013e318232a949.
27 Dong R, Zhao R, Zheng S, et al. Abnormal DNA methylation of ITGAL (CD11a) in CD4+ T cells from infants with biliary atresia[J].Biochem Biophys Res Commun, 2012, 417(3):986-990.DOI:10.1016/j.bbrc.2011.12.054.
28 Li K, Zhang X, Yang L, et al. Foxp3 promoter methylation impairs suppressive function of regulatory T cells in biliary atresia[J].Am J Physiol Gastrointest Liver Physiol, 2016, 311(6):G989-G997.DOI:10.1152/ajpgi.00032.2016.
29 Matthews RP, Eauclaire SF, Mugnier M, et al. DNA hypomethylation causes bile duct defects in zebrafish and is a distinguishing feature of infantile biliary atresia[J].Hepatology, 2011, 53(3):905-914.DOI:10.1002/hep.24106.
30 Cui S, Eauclaire SF, Matthews RP.Interferon-gamma directly mediates developmental biliary defects[J].Zebrafish, 2013, 10(2):177-183.DOI:10.1089/zeb.2012.0815.
31 Yang Y, Jin Z, Dong R, et al. MicroRNA-29b/142-5p contribute to the pathogenesis of biliary atresia by regulating the IFN-gamma gene[J].Cell Death Dis, 2018, 9(5):545.DOI:10.1038/s41419-018-0605-y.
32 Cofer ZC, Cui S, Eauclaire SF, et al. Methylation Microarray Studies Highlight PDGFA Expression as a Factor in Biliary Atresia[J].PLoS One, 2016, 11(3):e0151521.DOI:10.1371/journal.pone.0151521.
33 Udomsinprasert W, Kitkumthorn N, Mutirangura A, et al. Global methylation, oxidative stress, and relative telomere length in biliary atresia patients[J].Sci Rep, 2016, 6:26969.DOI:10.1038/srep26969.
34 Udomsinprasert W, Kitkumthorn N, Mutirangura A, et al. Association between Promoter Hypomethylation and Overexpression of Autotaxin with Outcome Parameters in Biliary Atresia[J].PLoS One, 2017, 12(1):e0169306.DOI:10.1371/journal.pone.0169306.
35 Kooistra SM, Helin K.Molecular mechanisms and potential functions of histone demethylases[J].Nat Rev Mol Cell Biol, 2012, 13(5):297-311.DOI:10.1038/nrm3327.
36 Emmett MJ, Lazar MA.Integrative regulation of physiology by histone deacetylase 3[J].Nat Rev Mol Cell Biol, 2019, 20(2):102-115.DOI:10.1038/s41580-018-0076-0.
37 Barbier-Torres L, Beraza N, Fernandez-Tussy P, et al. Histone deacetylase 4 promotes cholestatic liver injury in the absence of prohibitin-1[J].Hepatology, 2015, 62(4):1237-1248.DOI:10.1002/hep.27959.
38 Rinn JL, Chang HY.Genome regulation by long noncoding RNAs[J].Annu Rev Biochem, 2012, 81:145-166.DOI:10.1146/annurev-biochem-051410-092902.
39 Nuerzhati Y, Dong R, Song Z, et al. Role of the long noncoding RNAAnnexin A2 pseudogene 3/Annexin A2 signaling pathway in biliary atresiaassociated hepatic injury[J].Int J Mol Med, 2019, 43(2):739-748.DOI:10.3892/ijmm.2018.4023.
40 Zhang Y, Liu C, Barbier O, et al. Bcl2 is a critical regulator of bile acid homeostasis by dictating Shp and LncRNA H19 function[J].Sci Rep, 2016, 6:20559.DOI:10.1038/srep20559.
41 Li X, Liu R, Huang Z, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans[J].Hepatology, 2018, 68(2):599-615.DOI:10.1002/hep.29838.
42 Xiao Y, Liu R, Li X, et al. Long Noncoding RNA H19 Contributes to Cholangiocyte Proliferation and Cholestatic Liver Fibrosis in Biliary Atresia[J].Hepatology, 2019, 70(5):1658-1673.DOI:10.1002/hep.30698.
43 Edupuganti RR, Geiger S, Lindeboom RGH, et al. N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulate mRNA homeostasis[J].Nat Struct Mol Biol, 2017, 24(10):870-878.DOI:10.1038/nsmb.3462.
44 Liu N, Dai Q, Zheng G, et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J].Nature, 2015, 518(7540):560-564.DOI:10.1038/nature14234.
45 Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J].Nature, 2013, 495(7441):384-388.DOI:10.1038/nature11993.
46 Rupaimoole R, Slack FJ.MicroRNA therapeutics:towards a new era for the management of cancer and other diseases[J].Nat Rev Drug Discov, 2017, 16(3):203-222.DOI:10.1038/nrd.2016.246.
47 Ozcan G, Ozpolat B, Coleman RL, et al. Preclinical and clinical development of siRNA-based therapeutics[J].Adv Drug Deliv Rev, 2015, 87:108-119.DOI:10.1016/j.addr.2015.01.007.
48 Zhang H, Pandey S, Travers M, et al. Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer[J].Cell, 2018, 175(5):1244-1258.e1226.DOI:10.1016/j.cell.2018.09.051.
49 He Z, Yang D, Fan X, et al. The Roles and Mechanisms of LncRNAs in Liver Fibrosis[J].Int J Mol Sci, 2020, 21(4):1482.DOI:10.3390/ijms21041482.
相似文献/References:
[1]毛永忠,汤绍涛,阮庆兰,等.胆道闭锁肝组织MMP-1、MMP-2、TIMP-1的表达与预后研究[J].临床小儿外科杂志,2007,6(01):5.
[2]毛永忠,汤绍涛,阮庆兰,等.胆道闭锁肝脏组织MMP-2、TGF-β_1的表达及意义[J].临床小儿外科杂志,2007,6(03):5.
[3]余梦楠 刘钢 黄柳明 王伟. 胆道闭锁术后反复发作性胆管炎的细菌谱分析及抗生素选择[J].临床小儿外科杂志,2012,11(03):187.
[J].Journal of Clinical Pediatric Surgery,2012,11(11):187.
[4]董淳强 杨体泉 董昆. 胆道闭锁术后早期胆管炎风险因素分析[J].临床小儿外科杂志,2013,12(05):348.
[5]陈功 郑珊 孙松. 不同年龄胆道闭锁患儿手术效果分析[J].临床小儿外科杂志,2014,13(01):22.
[6]谭梅军 陶强 黄金狮. IL-17在胆道闭锁患儿肝组织中的表达及意义[J].临床小儿外科杂志,2014,13(04):302.
[7]杨文萍 吴艳 张守华. 胆道闭锁患者肝脏组织病理改变的综合评价[J].临床小儿外科杂志,2015,14(01):10.
[8]李康 阳历 汤绍涛. 胆道闭锁患者肝内胆管γδT 细胞和调节性T细胞浸润及意义[J].临床小儿外科杂志,2015,14(01):16.
[9]刘丹丹 詹江华 高伟. 胆道闭锁患者肝门的病理解剖学研究[J].临床小儿外科杂志,2015,14(01):20.
[10]张震 李龙 乔国梁. 胆道闭锁Kasai术后生存率及条件生存率分析[J].临床小儿外科杂志,2015,14(01):25.
备注/Memo
收稿日期:2020-07-24。
基金项目:国家自然基金面上项目(编号:81974059);上海申康医院发展中心临床三年行动计划疑难疾病精准诊治攻关项目(编号:SHDC2020CR2009A);2017年上海市重中之重临床重点学科建设项目(编号:2017ZZ02022)
通讯作者:郑珊,Email:szheng@shmu.edu.cn