Zou Qianqian,Cai Chunquan.Research advances in occurring mechanism of neural tube defects induced by diabetic pregnancy[J].Journal of Clinical Pediatric Surgery,2019,18(09):789-794.[doi:10.3969/j.issn.1671-6353.2019.09.017]
糖尿病妊娠诱发神经管缺陷发生机制的研究进展
- Title:
- Research advances in occurring mechanism of neural tube defects induced by diabetic pregnancy
- Keywords:
- Diabetes; Gestational; Neural Tube Defects/ET
- 分类号:
- R726.2;R714.2;R714.256
- 摘要:
- 神经管缺陷(Neural tube defects,NTDs)是由于胚胎发育期神经管闭合不全导致的出生缺陷,是新生儿出生缺陷高发疾病之一。目前已知,针对孕前和孕早期妇女补充叶酸能够降低NTDs的发生率。最新研究表明糖尿病妊娠等其他因素同样能够作用于孕妇,导致胎儿发生NTDs。本文回顾关于糖尿病妊娠诱导新生儿NTDs发生机制的相关文献,为预防NTDs提供新的研究方向。
- Abstract:
- Neural tube defects are one of the most common types of neonatal birth defects caused by incomplete neural tube closure during embryonic development.It is currently well-known that supplementing folic acid in women before and during pregnancy can reduce the incidence of neural tube defects.The latest researches show that there are still other factors affecting pregnant women,such as diabetes pregnancy,leading to neural tube defects,This article reviews the relevant literature on neonatal neural tube defects induced by diabetic pregnancy and providing new dimensions for preventing neural tube defects.
参考文献/References:
1 Wang L,Chang S,Wang Z,et al.Altered GNAS imprinting due to folic acid deficiency contributes to poor embryo development and may lead to neural tube defects[J].Oncotarget,2017,8(67):110797-110810.DOI:10.18632/oncotarget.22731.
2 Zhao Z,Cao L,Reece EA.Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects[J].Proc Natl Acad Sci USA,2017,114(17):4489-4494.DOI:10.1073/pnas.1616119114.
3 髙俜娉,鲍南.神经管缺陷的病因、治疗及未来展望[J].临床小儿外科杂志,2013,12(2):146-148.DOI:10.3969/j.issn.1671-6353.2013.02.022. Gao PP,Bao N.Causes,treatment and future prospects of neural tube defects[J].J Clin Ped Sur,2013,12(02):146-148.DOI:10.3969/j.issn.1671-6353.2013.02.022.
4 Organization WH.Diabetes country profiles 2016-China,2016[DB/OL].http://www.who.int/diabetes/country-profiles/chn_zh.pdf?ua=1.
5 Kim G,Cao L,Reece EA,et al.Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy[J].Sci Rep,2017,7(1):11107.DOI:10.1038/s41598-017-11655-6.
6 Wang F,Xu C,Reece EA,et al.Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy[J].Nat Commun,2017,8:15182.DOI:10.1038/ncomms15182.
7 Wu Y,Wang F,Fu M,et al.Cellular stress,excessive apoptosis,and the effect of metformin in a mouse model of type 2 diabetic embryopathy[J].Diabetes,2015,64(7):2526-2536.DOI:10.2337/db14-1683.
8 Xu C,Li X,Wang F,et al.Trehalose prevents neural tube defects by correcting maternal diabetes-suppressed autophagy and neurogenesis[J].Am J Physiol Endocrinol Metab,2013,305(5):E667-E678.DOI:10.1152/ajpendo.00185.2013.
9 Ornoy A,Reece EA,Pavlinkova G,et al.Effect of maternal diabetes on the embryo,fetus,and children:congenital anomalies,genetic and epigenetic changes and developmental outcomes[J].Birth Defects Res C Embryo Today,2015,105(1):53-72.DOI:10.1002/bdrc.21090.
10 李旭,梁平.儿童神经管缺陷的病因及危险因素分析[J].临床小儿外科杂志,2015,14(3):241-243.DOI:10.3969/j.issn.1671-6353.2015.03.022. Li X,Liang P.Analysis of etiologies and risk factors of neural tube defects in children[J].J Clin Ped Sur,2015,14(3):241-243.DOI:10.3969/j.issn.1671-6353.2015.03.022.
11 García-Sanz P,Mirasierra M,Moratalla R,et al.Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy[J].Sci Rep,2017,7(1):389.DOI:10.1038/s41598-017-00334-1.
12 Zhao Y,Dong D,Reece EA,et al.Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy[J].Am J Obstet Gynecol,2018,218(1):136.e1-136.e10.DOI:10.1016/j.ajog.2017.10.040.
13 Yang P,Reece EA,Wang F,et al.Decoding the oxidative stress hypothesis in diabetic embryopathy through proapoptotic kinase signaling[J].Am J Obstet Gynecol,2015,212(5):569-579.DOI:10.1016/j.ajog.2014.11.036.
14 Cao L,Tan C,Meng F,et al.Amelioration of intracellular stress and reduction of neural tube defects in embryos of diabetic mice by phytochemical quercetin[J].Sci Rep,2016,6:21491.DOI:10.1038/srep21491.
15 Ghimire K,Altmann HM,Straub AC,et al.Nitric oxide:what’s new to NO[J].Am J Physiol Cell Physiol,2017,312(3):C254-C262.DOI:10.1152/ajpcell.00315.2016.
16 Kumar S,Stokes J,Singh UP,et al.Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells[J].Tumour Biol,2017,39(10):1010428317715039.DOI:10.1177/1010428317715039.
17 Zhao Z,Reece EA.New concepts in diabetic embryopathy[J].Clin Lab Med,2013,33(2):207-233.DOI:10.1016/j.cll.2013.03.017.
18 Stepien KM,Heaton R,Rankin S,et al.Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders[J].J Clin Med,2017,6(7):E71.DOI:10.3390/jcm6070071.
19 Zhong J,Xu C,Gabbay-Benziv R,et al.Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects,restores mitochondrial function and suppresses cellular stress in diabetic embryopathy[J].Free Radic Biol Med,2016,96:234-244.DOI:10.1016/j.freeradbiomed.2016.04.030.
20 Dong D,Reece EA,Yang P.The Nrf2 activator vinylsulfone reduces high glucose-induced neural tube defects by suppressing cellular stress and apoptosis[J].Reprod Sci,2016,23(8):993-1000.DOI:10.1177/1933719115625846.
21 Wang F,Fisher SA,Zhong J,et al.Superoxide dismutase 1 in vivo ameliorates maternal diabetes mellitus-induced apoptosis and heart defects through restoration of impaired Wnt signaling[J].Circ Cardiovasc Genet,2015,8(5):665-676.DOI:10.1161/CIRCGENETICS.115.001138.
22 Dong D,Reece EA,Lin X,et al.New development of the yolk sac theory in diabetic embryopathy:molecular mechanism and link to structural birth defects[J].Am J Obstet Gynecol,2016,214(2):192-202.DOI:10.1016/j.ajog.2015.09.082.
23 Chen X,Shen WB,Yang P,et al.High glucose inhibits neural stem cell differentiation through oxidative stress and endoplasmic reticulum stress[J].Stem Cells Dev,2018,27(11):745-755.DOI:10.1089/scd.2017.0203.
24 Cao L,Liu P,Gill K,et al.Identification of novel cell survival regulation in diabetic embryopathy via phospholipidomic profiling[J].Biochem Biophys Res Commun,2016,470(3):599-605.DOI:10.1016/j.bbrc.2016.01.098.
25 Pani L,Horal M,Loeken MR.Polymorphic Susceptibility to the Molecular Causes of Neural Tube Defects During Diabetic Embryopathy[J].Diabetes,2002,51(9):2871.DOI:10.2337/diabetes.51.9.2871.
26 Bragoszewski P,Turek M,Chacinska A.Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system[J].Open Biol,2017,7(4).DOI:10.1098/rsob.170007.
27 Colla E,Panattoni G,Ricci A,et al.Toxic properties of microsome-associated alpha-synuclein species in mouse primary neurons[J].Neurobiol Dis,2018,111:36-47.DOI:10.1016/j.nbd.2017.12.004.
28 Samuel F,Flavin WP,Iqbal S,et al.Effects of Serine 129 Phosphorylation on α-Synuclein Aggregation,Membrane Association,and Internalization[J].J Biol Chem,2016,291(9):4374-4385.DOI:10.1074/jbc.M115.705095.
29 Dowhan W.Understanding phospholipid function:Why are there so many lipids[J].J Biol Chem,2017,292(26):10755-10766.DOI:10.1074/jbc.X117.794891.
30 Leslie CC.Cytosolic phospholipase A:physiological function and role in disease[J].J Lipid Res,2015,56(8):1386-402.DOI:10.1194/jlr.R057588.
31 Hsieh HL,Yang CM.Role of redox signaling in neuroinflammation and neurodegenerative diseases[J].Biomed Res Int,2013,2013:484613.DOI:10.1155/2013/484613.
32 Seo JB,Jung SR,Huang W,et al.Charge shielding of PIP2 by cations regulates enzyme activity of phospholipase C[J].PLoS One,2015,10(12):e0144432.DOI:10.1371/journal.pone.0144432.
33 Hemmings BA,Restuccia DF.The PI3K-PKB/Akt pathway[J].Cold Spring Harb Perspect Biol,2015,7(4)pii:a026609.DOI:10.1101/cshperspect.a026609.
34 Walinda E,Morimoto D,Sugase K,et al.Dual function of phosphoubiquitin in E3 activation of Parkin[J].J Biol Chem,2016,291(32):16879-16891.DOI:10.1074/jbc.M116.728600.
35 Gupta A,Anjomani-Virmouni S,Koundouros N,et al.PARK2 loss promotes cancer progression via redox-mediated inactivation of PTEN[J].Mol Cell Oncol,2017,4(6):e1329692.DOI:10.1080/23723556.2017.1329692.
36 Ham SJ,Lee SY,Song S,et al.Interaction between RING1(R1) and the ubiquitin-like (UBL) domains Is critical for the regulation of Parkin activity[J].J Biol Chem,2016,291(4):1803-1816.DOI:10.1074/jbc.M115.687319.
37 Han JY,Kang MJ,Kim KH,et al.Nitric oxide induction of Parkin translocation in PTEN-induced putative kinase 1(PINK1) deficiency:functional role of neuronal nitric oxide synthase during mitophagy[J].J Biol Chem,2015,290(16):10325-10335.DOI:10.1074/jbc.M114.624767.
38 Lee S,Zhang C,Liu X.Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses[J].J Biol Chem,2015,290(2):904-917.DOI:10.1074/jbc.M114.606798.
39 Zhang X,Wan JQ,Tong XP.Potassium channel dysfunction in neurons and astrocytes in Huntington’s disease[J].CNS Neurosci Ther,2018,24(4):311-318.DOI:10.1111/cns.12804.
40 Katsuragi Y,Ichimura Y,Komatsu M.p62/SQSTM1 functions as a signaling hub and an autophagy adaptor[J].FEBS J,2015,282(24):4672-4678.DOI:10.1111/febs.13540.
41 Kulkarni VV,Maday S.Compartment-specific dynamics and functions of autophagy in neurons[J].Dev Neurobiol,2018,78(3):298-310.DOI:10.1002/dneu.22562.
42 Ravanan P,Srikumar IF,Talwar P.Autophagy:The spotlight for cellular stress responses[J].Life Sci,2017,188:53-67.DOI:10.1016/j.lfs.2017.08.029.
43 Avagliano L,Doi P,Tosi D,et al.Cell death and cell proliferation in human spina bifida[J].Birth Defects Res A Clin Mol Teratol,2016,106(2):104-113 DOI:10.1002/bdra.23466.
44 Lin S,Ren A,Wang L,et al.Oxidative stress and apoptosis in benzo[a]pyrene-induced neural tube defects[J].Free Radic Biol Med,2018,116:149-158.DOI:10.1016/j.freeradbiomed.2018.01.004.
45 赵美玲,季宇彬,毕明刚.细胞凋亡的死亡受体途径[J].黑龙江医药,2013,26(2):196-199. DOI:1006-2882(2013)02-196-04. Zhao ML,Ji YB,Bi MG.Death receptor pathway of cell apoptosis[J].Heilongjiang Medicine Journal,2013,26(2):196-199. DOI:1006-2882(2013)02-196-04.
46 Liang Y,Xu W,Liu S,et al.N-acetyl-glucosamine sensitizes non-small cell lung cancer cells to TRAIL-induced apoptosis by activating death receptor 5[J].Cell Physiol Biochem,2018,45(5):2054-2070.DOI:10.1159/000488042.
47 Giampazolias E,Tait SW.Mitochondria and the hallmarks of cancer[J].FEBS J,2016,283(5):803-14.DOI:10.1159/000488042.
48 Zhang M,Zheng J,Nussinov R,et al.Release of cytochrome C from Bax pores at the mitochondrial membrane[J].Sci Rep,2017,7(1):2635.DOI:10.1038/s41598-017-02825-7.
49 Bhola PD,Letai A.Mitochondria-judges and executioners of cell death sentences[J].Mol Cell,2016,61(5):695-704.DOI:10.1016/j.molcel.2016.02.019.
50 Ge HW,Hu WW,Ma LL,et al.Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats[J].Physiol Behav,2015,151:16-23.DOI:10.1016/j.physbeh.2015.07.008.
51 Kong FJ,Ma LL,Guo JJ,et al.Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice[J].Clin Sci,2018,132(1):111-125.DOI:10.1042/CS20171432.
52 Chen X,Li X,Zhang W,et al.Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway[J].Metabolism,2018,83:256-270.DOI:10.1016/j.metabol.2018.03.004.
相似文献/References:
[1]王瑞红,左健,孙子兰,等.新生儿先天性动脉导管未闭与新生儿母亲糖尿病相关性的Meta分析[J].临床小儿外科杂志,2022,21(11):1067.[doi:10.3760/cma.j.cn101785-202109037-013]
Wang Ruihong,Zuo Jian,Sun Zilan,et al.Correlation between neonatal patent ductus arteriosus and infants of diabetic mothers: a Meta-analysis[J].Journal of Clinical Pediatric Surgery,2022,21(09):1067.[doi:10.3760/cma.j.cn101785-202109037-013]
备注/Memo
收稿日期:2018-04-04。
基金项目:国家自然科学基金(编号:81771589);天津市重大疾病防治科技重大专项(编号:18ZXDBSY00170);天津市卫生行业重点攻关项目(编号:16KG166)
通讯作者:蔡春泉,Email:tjpns@126.com