Li Yawen,Zhu Zhu,Wang Jinhu,et al.Research advances of artificial intelligence in the diagnosis and treatment of neuroblastoma[J].Journal of Clinical Pediatric Surgery,2025,(04):392-395.[doi:10.3760/cma.j.cn101785-202307027-018]
人工智能在神经母细胞瘤辅助诊疗中的应用研究进展
- Title:
- Research advances of artificial intelligence in the diagnosis and treatment of neuroblastoma
- Keywords:
- Neuroblastoma; Diagnosis; Therapy; Artificial Intelligence; Machine Learning; Deep Learning
- 摘要:
- 神经母细胞瘤作为儿童期最常见的颅外实体肿瘤,恶性程度高,总体生存率低,临床预后差。近年来,随着计算机运算能力的增强,人工智能在疾病诊断、影像医学等领域取得了重大突破和进展。本文围绕人工智能在神经母细胞瘤早期诊断、分类分型、预后预测等辅助诊断方面的研究及应用进行综述,并结合实际情况分析目前人工智能在临床应用所面临的挑战和困境,展望其未来发展方向。
- Abstract:
- As the most common extracranial solid tumor in children,neuroblastoma is a malignant tumor with a low overall survival rate and a poor clinical prognosis.With rapid advancements of computer technology,artificial intelligence (AI) has made significant breakthroughs in the fields of disease diagnosis and imaging medicine.This review summarized the applications and researches of AI in neuroblastoma,such as early diagnosis,classification,staging and prognostic prediction.It also discussed the current challenges and future prospects of AI applications in clinical practices.
参考文献/References:
[1] 中国抗癌协会小儿肿瘤专业委员会,中华医学会小儿外科学分会肿瘤学组.儿童神经母细胞瘤诊疗专家共识CCCG-NB-2021方案[J].中华小儿外科杂志,2022,43(7):588-598.DOI:10.3760/cma.j.cn421158-20211227-00638. Pediatric Oncology Committee,Chinese Anti-Cancer Association,Oncology Group,Chinese Association of Pediatric Surgeons. Expert consensus on diagnosing and treating of neuroblastoma in children:CCCG-NB-2021 regimen[J].Chin J Pediatr Surg,2022,43(7): 588-598. DOI:10.3760/cma.j.cn421158-20211227-00638.
[2] London WB,Castel V,Monclair T,et al.Clinical and biologic features predictive of survival after relapse of neuroblastoma:a report from the International Neuroblastoma Risk Group project[J].J Clin Oncol,2011,29(24):3286-3292.DOI:10.1200/JCO.2010.34.3392.
[3] 晏旭东.人工智能的发展历程和应用简介[J].中国科技纵横,2019(22):65-66. Yan XD.Introduction to the development history and applications of artificial intelligence[J].China Sci Technol Overv,2019(22):65-66.
[4] Esteva A,Robicquet A,Ramsundar B,et al.A guide to deep learning in healthcare[J].Nat Med,2019,25(1):24-29.DOI:10.1038/s41591-018-0316-z.
[5] Sertel O,Kong J,Shimada H,et al.Computer-aided prognosis of neuroblastoma on whole-slide images:classification of stromal development[J].Pattern Recognit,2009,42(6):1093-1103.DOI:10.1016/j.patcog.2008.08.027.
[6] Kong J,Sertel O,Shimada H,et al.Computer-aided evaluation of neuroblastoma on whole-slide histology images:classifying grade of neuroblastic differentiation[J].Pattern Recognit,2009,42(6):1080-1092.DOI:10.1016/j.patcog.2008.10.035.
[7] Homeyer A,Schenk A,Arlt J,et al.Practical quantification of necrosis in histological whole-slide images[J].Comput Med Imaging Graph,2013,37(4):313-322.DOI:10.1016/j.compmedimag.2013.05.002.
[8] Zormpas-Petridis K,Noguera R,Ivankovic DK,et al.SuperHistopath:a deep learning pipeline for mapping tumor heterogeneity on low-resolution whole-slide digital histopathology images[J].Front Oncol,2021,10:586292.DOI:10.3389/fonc.2020.586292.
[9] Veiga-Canuto D,Cerdà-Alberich L,Sangüesa Nebot C,et al.Co-mparative multicentric evaluation of Inter-Observer variability in manual and automatic segmentation of neuroblastic tumors in magnetic resonance images[J].Cancers (Basel),2022,14(15):3648.DOI:10.3390/cancers14153648.
[10] 李金男,王威亚,梁冬妮,等.INSS和INRGSS分期评估神经母细胞瘤预后的临床价值[J].四川大学学报(医学版),2014,45(4):720-723.DOI:10.13464/j.scuxbyxb.2014.04.038. Li JN,Wang WY,Liang DN,et al.Clinical values of INSS and INRGSS staging in assessing the prognosis of neuroblastoma[J].J Sichuan Univ (Med Sci),2014,45(4):720-723.DOI:10.13464/j.scuxbyxb.2014.04.038.
[11] Gheisari S,Catchpoole DR,Charlton A,et al.Convolutional deep belief network with feature encoding for classification of neuroblastoma histological images[J].J Pathol Inform,2018,9:17.DOI:10.4103/jpi.jpi_73_17.
[12] Liu YH,Yin MZ,Sun SL.DetexNet:accurately diagnosing frequent and challenging pediatric malignant tumors[J].IEEE Trans Med Imaging,2021,40(1):395-404.DOI:10.1109/TMI.2020.3027547.
[13] Delli Priscoli M,Memmolo P,Ciaparrone G,et al.Neuroblastoma cells classification through learning approaches by direct analysis of digital holograms[J].IEEE J Sel Top Quantum Electron,2021,27(5):1-9.DOI:10.1109/jstqe.2021.3059532.
[14] Park A,Nam S.Deep learning for stage prediction in neuroblastoma using gene expression data[J].Genomics Inform,2019,17(3):e30.DOI:10.5808/GI.2019.17.3.e30.
[15] Cohn SL,Pearson ADJ,London WB,et al.The international neuroblastoma risk group (INRG) classification system:an INRG task force report[J].J Clin Oncol,2009,27(2):289-297.DOI:10.1200/JCO.2008.16.6785.
[16] Bussola N,Papa B,Melaiu O,et al.Quantification of the immune content in neuroblastoma:deep learning and topological data analysis in digital pathology[J].Int J Mol Sci,2021,22(16):8804.DOI:10.3390/ijms22168804.
[17] Stoks M,Vieco-Martí I,Noguera I,et al.Digital image analysis workflows for evaluation of cell behavior and tumor microenvironment to aid therapeutic assessment in high-risk neuroblastoma[J].Comput Biol Med,2023,164:107364.DOI:10.1016/j.compbiomed.2023.107364.
[18] Su ZG,Lu HH,Wu Y,et al.Predicting potential lncRNA biomarkers for lung cancer and neuroblastoma based on an ensemble of a deep neural network and LightGBM[J].Front Genet,2023,14:1238095.DOI:10.3389/fgene.2023.12380n10.3389/fonc.2021.653863.
[19] Ramesh S,Michael D,Liu L,et al.Predicting response to chemotherapy in neuroblastoma using deep learning:a report from the International Neuroblastoma Risk Group[J].J Clin Oncol,2021,39(S15):10039.DOI:10.1200/JCO.2021.39.15_suppl.10039.
[20] Feng Y,Wang XL,Zhang J.A heterogeneous ensemble learning method for neuroblastoma survival prediction[J].IEEE J Biomed Health Inform,2022,26(4):1472-1483.DOI:10.1109/jbhi.2021.3073056.
[21] Tranchevent LC,Azuaje F,Rajapakse JC.A deep neural network approach to predicting clinical outcomes of neuroblastoma patients[J].BMC Med Genomics,2019,12(Suppl 8):178.DOI:10.1186/s12920-019-0628-y.
[22] Wang CH,Lue W,Kaalia R,et al.Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma[J].Sci Rep,2022,12(1):15425.DOI:10.1038/s41598-022-19019-5.
[23] Liu GB,Poon M,Zapala MA,et al.Incorporating radiomics into machine learning models to predict outcomes of neuroblastoma[J].J Digit Imaging,2022,35(3):605-612.DOI:10.1007/s10278-022-00607-w.
[24] Pereira T,Silva F,Claro P,et al.A random forest-based classifier for MYCN status prediction in neuroblastoma using CT images[J].Annu Int Conf IEEE Eng Med Biol Soc,2022,2022:3854-3857.DOI:10.1109/embc48229.2022.9871349.
[25] Ahmed AA,Abouzid M,Kaczmarek E.Deep learning approaches in histopathology[J].Cancers (Basel),2022,14(21):5264.DOI:10.3390/cancers14215264.
相似文献/References:
[1]陆良生阮双岁毕允力陆毅群王翔葛琳娟肖现民.45例两性畸形患儿的诊断及治疗分析[J].临床小儿外科杂志,2011,10(01):0.
[2]郭春宝,王珊,金先庆,等.Cochrane系统评价方法对神经母细胞瘤分子与生物标记物的Meta分析[J].临床小儿外科杂志,2008,7(01):2.
[3]未德成,王忠荣,张燕敏,等.脂氧合酶抑制剂NDGA对人神经母细胞瘤SK-N-SH细胞生物学特性的影响[J].临床小儿外科杂志,2008,7(01):3.
[4]谷奇,邹继珍,叶辉,等.促纤维增生性小圆细胞肿瘤诊治体会[J].临床小儿外科杂志,2008,7(01):32.
[5]陈新让,王家祥,余捷凯,等.基于支持向量机神经母细胞瘤血清蛋白质标记物的检测及临床应用[J].临床小儿外科杂志,2008,7(02):12.
[6]孙颖华,郑珊,钱蔷英,等.超声检查在胆道闭锁鉴别诊断中的运用价值[J].临床小儿外科杂志,2008,7(04):0.
[7]何炜婧,郑珊,沈淳,等.新生儿腹膜后占位性病变诊治分析[J].临床小儿外科杂志,2008,7(06):5.
[8]张颖,李洪秋,赵群,等.儿童骨嗜酸细胞性肉芽肿的诊断与治疗[J].临床小儿外科杂志,2007,6(01):23.
[9]罗远建,金科,甘青,等.儿童神经母细胞瘤的影像学表现[J].临床小儿外科杂志,2007,6(02):22.
[10]蒋跃先.845例小儿急性肠套叠诊治体会[J].临床小儿外科杂志,2007,6(02):30.
[11]张鑫,金倩涯,袁晓军.青少年和成人神经母细胞瘤诊疗策略和挑战:病例报告并文献复习[J].临床小儿外科杂志,2023,22(07):625.[doi:10.3760/cma.j.cn101785-202306028-005]
Zhang Xin,Jin Qianya,Yuan Xiaojun.Challenges and strategies in the diagnosis and treatment of neuroblastoma in adolescents and adults: one case report with a literature review[J].Journal of Clinical Pediatric Surgery,2023,22(04):625.[doi:10.3760/cma.j.cn101785-202306028-005]
[12]邓晓斌,彭亮,赵珍珍,等.循环肿瘤细胞在神经母细胞瘤临床诊断及预后评估中的应用研究[J].临床小儿外科杂志,2023,22(08):741.[doi:10.3760/cma.j.cn101785-202301021-008]
Deng Xiaobin,Peng Liang,Zhao Zhenzhen,et al.Clinical application of circulating tumor cells in the diagnosis and prognosis of neuroblastoma[J].Journal of Clinical Pediatric Surgery,2023,22(04):741.[doi:10.3760/cma.j.cn101785-202301021-008]
备注/Memo
收稿日期:2023-7-17。
基金项目:国家自然科学基金区域联合基金重点项目(U20A20137)
通讯作者:龚方戚,Email:gongfangqi@zju.edu.cn