[1]李雅雯,朱珠,王金湖,等.人工智能在神经母细胞瘤辅助诊疗中的应用研究进展[J].临床小儿外科杂志,2025,(04):392-395.[doi:10.3760/cma.j.cn101785-202307027-018]
 Li Yawen,Zhu Zhu,Wang Jinhu,et al.Research advances of artificial intelligence in the diagnosis and treatment of neuroblastoma[J].Journal of Clinical Pediatric Surgery,2025,(04):392-395.[doi:10.3760/cma.j.cn101785-202307027-018]
点击复制

人工智能在神经母细胞瘤辅助诊疗中的应用研究进展

参考文献/References:

[1] 中国抗癌协会小儿肿瘤专业委员会,中华医学会小儿外科学分会肿瘤学组.儿童神经母细胞瘤诊疗专家共识CCCG-NB-2021方案[J].中华小儿外科杂志,2022,43(7):588-598.DOI:10.3760/cma.j.cn421158-20211227-00638. Pediatric Oncology Committee,Chinese Anti-Cancer Association,Oncology Group,Chinese Association of Pediatric Surgeons. Expert consensus on diagnosing and treating of neuroblastoma in children:CCCG-NB-2021 regimen[J].Chin J Pediatr Surg,2022,43(7): 588-598. DOI:10.3760/cma.j.cn421158-20211227-00638.
[2] London WB,Castel V,Monclair T,et al.Clinical and biologic features predictive of survival after relapse of neuroblastoma:a report from the International Neuroblastoma Risk Group project[J].J Clin Oncol,2011,29(24):3286-3292.DOI:10.1200/JCO.2010.34.3392.
[3] 晏旭东.人工智能的发展历程和应用简介[J].中国科技纵横,2019(22):65-66. Yan XD.Introduction to the development history and applications of artificial intelligence[J].China Sci Technol Overv,2019(22):65-66.
[4] Esteva A,Robicquet A,Ramsundar B,et al.A guide to deep learning in healthcare[J].Nat Med,2019,25(1):24-29.DOI:10.1038/s41591-018-0316-z.
[5] Sertel O,Kong J,Shimada H,et al.Computer-aided prognosis of neuroblastoma on whole-slide images:classification of stromal development[J].Pattern Recognit,2009,42(6):1093-1103.DOI:10.1016/j.patcog.2008.08.027.
[6] Kong J,Sertel O,Shimada H,et al.Computer-aided evaluation of neuroblastoma on whole-slide histology images:classifying grade of neuroblastic differentiation[J].Pattern Recognit,2009,42(6):1080-1092.DOI:10.1016/j.patcog.2008.10.035.
[7] Homeyer A,Schenk A,Arlt J,et al.Practical quantification of necrosis in histological whole-slide images[J].Comput Med Imaging Graph,2013,37(4):313-322.DOI:10.1016/j.compmedimag.2013.05.002.
[8] Zormpas-Petridis K,Noguera R,Ivankovic DK,et al.SuperHistopath:a deep learning pipeline for mapping tumor heterogeneity on low-resolution whole-slide digital histopathology images[J].Front Oncol,2021,10:586292.DOI:10.3389/fonc.2020.586292.
[9] Veiga-Canuto D,Cerdà-Alberich L,Sangüesa Nebot C,et al.Co-mparative multicentric evaluation of Inter-Observer variability in manual and automatic segmentation of neuroblastic tumors in magnetic resonance images[J].Cancers (Basel),2022,14(15):3648.DOI:10.3390/cancers14153648.
[10] 李金男,王威亚,梁冬妮,等.INSS和INRGSS分期评估神经母细胞瘤预后的临床价值[J].四川大学学报(医学版),2014,45(4):720-723.DOI:10.13464/j.scuxbyxb.2014.04.038. Li JN,Wang WY,Liang DN,et al.Clinical values of INSS and INRGSS staging in assessing the prognosis of neuroblastoma[J].J Sichuan Univ (Med Sci),2014,45(4):720-723.DOI:10.13464/j.scuxbyxb.2014.04.038.
[11] Gheisari S,Catchpoole DR,Charlton A,et al.Convolutional deep belief network with feature encoding for classification of neuroblastoma histological images[J].J Pathol Inform,2018,9:17.DOI:10.4103/jpi.jpi_73_17.
[12] Liu YH,Yin MZ,Sun SL.DetexNet:accurately diagnosing frequent and challenging pediatric malignant tumors[J].IEEE Trans Med Imaging,2021,40(1):395-404.DOI:10.1109/TMI.2020.3027547.
[13] Delli Priscoli M,Memmolo P,Ciaparrone G,et al.Neuroblastoma cells classification through learning approaches by direct analysis of digital holograms[J].IEEE J Sel Top Quantum Electron,2021,27(5):1-9.DOI:10.1109/jstqe.2021.3059532.
[14] Park A,Nam S.Deep learning for stage prediction in neuroblastoma using gene expression data[J].Genomics Inform,2019,17(3):e30.DOI:10.5808/GI.2019.17.3.e30.
[15] Cohn SL,Pearson ADJ,London WB,et al.The international neuroblastoma risk group (INRG) classification system:an INRG task force report[J].J Clin Oncol,2009,27(2):289-297.DOI:10.1200/JCO.2008.16.6785.
[16] Bussola N,Papa B,Melaiu O,et al.Quantification of the immune content in neuroblastoma:deep learning and topological data analysis in digital pathology[J].Int J Mol Sci,2021,22(16):8804.DOI:10.3390/ijms22168804.
[17] Stoks M,Vieco-Martí I,Noguera I,et al.Digital image analysis workflows for evaluation of cell behavior and tumor microenvironment to aid therapeutic assessment in high-risk neuroblastoma[J].Comput Biol Med,2023,164:107364.DOI:10.1016/j.compbiomed.2023.107364.
[18] Su ZG,Lu HH,Wu Y,et al.Predicting potential lncRNA biomarkers for lung cancer and neuroblastoma based on an ensemble of a deep neural network and LightGBM[J].Front Genet,2023,14:1238095.DOI:10.3389/fgene.2023.12380n10.3389/fonc.2021.653863.
[19] Ramesh S,Michael D,Liu L,et al.Predicting response to chemotherapy in neuroblastoma using deep learning:a report from the International Neuroblastoma Risk Group[J].J Clin Oncol,2021,39(S15):10039.DOI:10.1200/JCO.2021.39.15_suppl.10039.
[20] Feng Y,Wang XL,Zhang J.A heterogeneous ensemble learning method for neuroblastoma survival prediction[J].IEEE J Biomed Health Inform,2022,26(4):1472-1483.DOI:10.1109/jbhi.2021.3073056.
[21] Tranchevent LC,Azuaje F,Rajapakse JC.A deep neural network approach to predicting clinical outcomes of neuroblastoma patients[J].BMC Med Genomics,2019,12(Suppl 8):178.DOI:10.1186/s12920-019-0628-y.
[22] Wang CH,Lue W,Kaalia R,et al.Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma[J].Sci Rep,2022,12(1):15425.DOI:10.1038/s41598-022-19019-5.
[23] Liu GB,Poon M,Zapala MA,et al.Incorporating radiomics into machine learning models to predict outcomes of neuroblastoma[J].J Digit Imaging,2022,35(3):605-612.DOI:10.1007/s10278-022-00607-w.
[24] Pereira T,Silva F,Claro P,et al.A random forest-based classifier for MYCN status prediction in neuroblastoma using CT images[J].Annu Int Conf IEEE Eng Med Biol Soc,2022,2022:3854-3857.DOI:10.1109/embc48229.2022.9871349.
[25] Ahmed AA,Abouzid M,Kaczmarek E.Deep learning approaches in histopathology[J].Cancers (Basel),2022,14(21):5264.DOI:10.3390/cancers14215264.

相似文献/References:

[1]陆良生阮双岁毕允力陆毅群王翔葛琳娟肖现民.45例两性畸形患儿的诊断及治疗分析[J].临床小儿外科杂志,2011,10(01):0.
[2]郭春宝,王珊,金先庆,等.Cochrane系统评价方法对神经母细胞瘤分子与生物标记物的Meta分析[J].临床小儿外科杂志,2008,7(01):2.
[3]未德成,王忠荣,张燕敏,等.脂氧合酶抑制剂NDGA对人神经母细胞瘤SK-N-SH细胞生物学特性的影响[J].临床小儿外科杂志,2008,7(01):3.
[4]谷奇,邹继珍,叶辉,等.促纤维增生性小圆细胞肿瘤诊治体会[J].临床小儿外科杂志,2008,7(01):32.
[5]陈新让,王家祥,余捷凯,等.基于支持向量机神经母细胞瘤血清蛋白质标记物的检测及临床应用[J].临床小儿外科杂志,2008,7(02):12.
[6]孙颖华,郑珊,钱蔷英,等.超声检查在胆道闭锁鉴别诊断中的运用价值[J].临床小儿外科杂志,2008,7(04):0.
[7]何炜婧,郑珊,沈淳,等.新生儿腹膜后占位性病变诊治分析[J].临床小儿外科杂志,2008,7(06):5.
[8]张颖,李洪秋,赵群,等.儿童骨嗜酸细胞性肉芽肿的诊断与治疗[J].临床小儿外科杂志,2007,6(01):23.
[9]罗远建,金科,甘青,等.儿童神经母细胞瘤的影像学表现[J].临床小儿外科杂志,2007,6(02):22.
[10]蒋跃先.845例小儿急性肠套叠诊治体会[J].临床小儿外科杂志,2007,6(02):30.
[11]张鑫,金倩涯,袁晓军.青少年和成人神经母细胞瘤诊疗策略和挑战:病例报告并文献复习[J].临床小儿外科杂志,2023,22(07):625.[doi:10.3760/cma.j.cn101785-202306028-005]
 Zhang Xin,Jin Qianya,Yuan Xiaojun.Challenges and strategies in the diagnosis and treatment of neuroblastoma in adolescents and adults: one case report with a literature review[J].Journal of Clinical Pediatric Surgery,2023,22(04):625.[doi:10.3760/cma.j.cn101785-202306028-005]
[12]邓晓斌,彭亮,赵珍珍,等.循环肿瘤细胞在神经母细胞瘤临床诊断及预后评估中的应用研究[J].临床小儿外科杂志,2023,22(08):741.[doi:10.3760/cma.j.cn101785-202301021-008]
 Deng Xiaobin,Peng Liang,Zhao Zhenzhen,et al.Clinical application of circulating tumor cells in the diagnosis and prognosis of neuroblastoma[J].Journal of Clinical Pediatric Surgery,2023,22(04):741.[doi:10.3760/cma.j.cn101785-202301021-008]

备注/Memo

收稿日期:2023-7-17。
基金项目:国家自然科学基金区域联合基金重点项目(U20A20137)
通讯作者:龚方戚,Email:gongfangqi@zju.edu.cn

更新日期/Last Update: 2025-04-28