Huang Yiyong,Yang Ge,Liu Yaoxi,et al.Proteomic analysis of serum-derived exosomes from congenital pseudarthrosis of tibia[J].Journal of Clinical Pediatric Surgery,2022,21(06):551-557.[doi:10.3760/cma.j.cn101785-202102043-010]
基于生物信息学分析的先天性胫骨假关节血清来源外泌体蛋白质组学研究
- Title:
- Proteomic analysis of serum-derived exosomes from congenital pseudarthrosis of tibia
- Keywords:
- Congenital Pseudarthrosis of Tibia; Tibia/AB; Pseudarthrosis/CN; Proteomics/CL; Proteomics/MT; Exosomes
- 摘要:
- 目的 比较先天性胫骨假关节(congenital pseudarthrosis of tibia,CPT)和正常儿童血清外泌体中蛋白的表达差异,寻找CPT的可能致病机制。方法 收集湖南省儿童医院6例CPT患儿和4例正常儿童的静脉血,通过分离出静脉血清、提取血清外泌体,使用串联质谱标签(tandem mass tag,TMT)标记定量蛋白组学技术,确定CPT患儿和正常儿童血清外泌体中的差异表达蛋白,并对差异蛋白进行GO分析、KEGG分析、DisGeNET富集分析及PPI分析。结果 与正常儿童血清中外泌体蛋白相比,CPT来源的血清外泌体中表达上调的蛋白共121个,表达下调的蛋白共289个。KEGG分析结果显示,差异蛋白在补体系统富集最为显著;糖代谢在GO分类中的生物进程中富集;DisGeNET富集分析结果显示,排名前五的疾病中有3种和骨质疏松症有关;PPI富集分析结果显示糖代谢为差异蛋白富集模块之一。结论 补体系统紊乱和细胞能量代谢异常可能是CPT的潜在致病机制。本研究为探索先天性胫骨假关节的病因及发病机制提供了新的思路。
- Abstract:
- Objective To explore the possible pathogenesis of congenital pseudarthrosis of tibia (CPT) through compare the differential protein expression in serum-derived exosomes (SDEs) between CPT and normal children.Methods SDEs were extracted from venous plasma of 6 CPT children and 4 normal controls.Then differentially expressed proteins were examined by tandem mass tag (TMT)-based proteomics.And proteomic information was acquired through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, gene ontology (GO) classification, DisGeNET enrichment analysis and protein-protein interaction (PPI) enrichment analysis.Results Based upon proteomics analysis, 121 up-regulated and 289 down-regulated proteins were identified.Complement & coagulation cascade was the most obvious enrichment in KEGG pathway.Monosaccharide metabolic process was one of enriched process during the biological process of gene ontology (GO) classification.DisGeNET enrichment analysis indicated that three of top five diseases were associated with osteoporosis.And glycolysis/gluconeogenesis was a part of enriched terms during PPI enrichment analysis.It hinted that complement and glycolysis/gluconeogenesis were abnormal in CPT.Conclusion Abnormality of complement and glycolysis/gluconeogenesis might be a potential pathogenic mechanism of CPT.Also this study may provide new rationales for exploring the etiology and pathogenesis of CPT.
参考文献/References:
[1] Kesireddy N, Kheireldin RK, Lu A, et al.Current treatment of congenital pseudarthrosis of the tibia:a systematic review and meta-analysis[J].J Pediatr Orthop B, 2018, 27(6):541-550.DOI:10.1097/BPB.0000000000000524.
[2] Pina ME, Veiga F.The influence of diluent on the release of theophylline from hydrophilic matrix tablets[J].Drug Dev Ind Pharm, 2000, 26(10):1125-1128.DOI:10.1081/ddc-100100279.
[3] Zhu G, Zheng Y, Liu Y, et al.Identification and characterization of NF1 and non-NF1 congenital pseudarthrosis of the tibia based on germline NF1 variants:genetic and clinical analysis of 75 patients[J].Orphanet J Rare Dis, 2019, 14(1):221.DOI:10.1186/s13023-019-1196-0.
[4] 汤用波, 梅海波.先天性胫骨假关节的病因学研究进展[J].临床小儿外科杂志, 2013, 12(3):234-236, 254.DOI:10.3969/j.issn.1671-6353.2013.03.023.Tang YB, Mei HB.Research etiological advances of congenital pseudarthrosis of tibia[J].J Clin Ped Sur, 2013, 12(3):234-236, 254.DOI:10.3969/j.issn.1671-6353.2013.03.023.
[5] 朱光辉, 梅海波, 刘昆, 等.OPG及RANKL在儿童先天性胫骨假关节病变骨与骨膜中的表达研究[J].临床小儿外科杂志, 2019, 18(4):331-334.DOI:10.3969/j.issn.1671-6353.2019.04.017.Zhu GH, Mei HB, Liu K, et al.Expressions of OPG and RANKL in tibia bone and periosteum of congenital tibial pseudarthrosis of the tibia in children[J].J Clin Ped Sur, 2019, 18(4):331-334.DOI:10.3969/j.issn.1671-6353.2019.04.017.
[6] Cheng C, Shoback D.Mechanisms underlying normal fracture healing and risk factors for delayed healing[J].Curr Osteoporos Rep, 2019, 17(1):36-47.DOI:10.1007/s11914-019-00501-5.
[7] Bahney CS, Zondervan RL, Allison P, et al.Cellular biology of fracture healing[J].J Orthop Res, 2019, 37(1):35-50.DOI:10.1002/jor.24170.
[8] Madhuri V, Mathew SE, Rajagopal K, et al.Does pamidronate enhance the osteogenesis in mesenchymal stem cells derived from fibrous hamartoma in congenital pseudarthrosis of the tibia?[J].Bone Rep, 2016, 5:292-298.DOI:10.1016/j.bonr.2016.10.003.
[9] Cho TJ, Seo JB, Lee HR, et al.Biologic characteristics of fibrous hamartoma from congenital pseudarthrosis of the tibia associated with neurofibromatosis type 1[J].J Bone Joint Surg Am, 2008, 90(12):2735-2744.DOI:10.2106/JBJS.H.00014.
[10] Ippolito E, Corsi A, Grill F, et al.Pathology of bone lesions associated with congenital pseudarthrosis of the leg[J].J Pediatr Orthop B, 2000, 9(1):3-10.DOI:10.1097/01202412-200001000-00002.
[11] Meldolesi J.Exosomes and ectosomes in intercellular communication[J].Curr Biol, 2018, 28(8):R435-R444.DOI:10.1016/j.cub.2018.01.059.
[12] Xie Y, Gao Y, Zhang L, et al.Involvement of serum-derived exosomes of elderly patients with bone loss in failure of bone remodeling via alteration of exosomal bone-related proteins[J].Aging Cell, 2018, 17(3):e12758.DOI:10.1111/acel.12758.
[13] Yang G, Yu H, Liu Y, et al.Serum-derived exosomes from neurofibromatosis type 1 congenital tibial pseudarthrosis impaired bone by promoting osteoclastogenesis and inhibiting osteogenesis[J].Exp Biol Med (Maywood), 2021, 246(2):130-141.DOI:10.1177/1535370220962737.
[14] Eisenberg KA, Vuillermin CB.Management of congenital pseudoarthrosis of the tibia and fibula[J].Curr Rev Musculoskelet Med, 2019, 12(3):356-368.DOI:10.1007/s12178-019-09566-2.
[15] Andrades JA, Nimni ME, Becerra J, et al.Complement proteins are present in developing endochondral bone and may mediate cartilage cell death and vascularization[J].Exp Cell Res, 1996, 227(2):208-213.DOI:10.1006/excr.1996.0269.
[16] Lee AR, Moon DK, Siregar A, et al.Involvement of mitochondrial biogenesis during the differentiation of human periosteum-derived mesenchymal stem cells into adipocytes, chondrocytes and osteocytes[J].Arch Pharm Res, 2019, 42(12):1052-1062.DOI:10.1007/s12272-019-01198-x.
[17] Tikkanen J, Leskel? HV, Lehtonen ST, et al.Attempt to treat congenital pseudarthrosis of the tibia with mesenchymal stromal cell transplantation[J].Cytotherapy, 2010, 12(5):593-604.DOI:10.3109/14653249.2010.487898.
[18] Antebi B, Pelled G, Gazit D.Stem cell therapy for osteoporosis[J].Curr Osteoporos Rep, 2014, 12(1):41-47.DOI:10.1007/s11914-013-0184-x.
[19] Dilogo IH, Mujadid F, Nurhayati RW, et al.Evaluation of bone marrow-derived mesenchymal stem cell quality from patients with congenital pseudoarthrosis of the tibia[J].J Orthop Surg Res, 2018, 13(1):266.DOI:10.1186/s13018-018-0977-9.
相似文献/References:
[1]邓凤良,谢鑑辉,梅海波,等.“三联方案”预防先天性胫骨假关节胫骨延长儿童膝关节屈曲挛缩的效果评价[J].临床小儿外科杂志,2018,17(07):528.
Deng Fengliang,Xie Jianhui,Mei Haibo,et al.Efficacy of “Triple Program” in preventing knee joint flexion contracture in children with congenital pseudarthrosis of the tibia during tibial lengthening[J].Journal of Clinical Pediatric Surgery,2018,17(06):528.
[2]朱光辉,梅海波,刘昆,等.OPG及RANKL在儿童先天性胫骨假关节病变骨与骨膜中的表达研究[J].临床小儿外科杂志,2019,18(04):331.[doi:10.3969/j.issn.1671-6353.2019.04.017]
Zhu Guanghui,Mei Haibo,Liu Kun,et al.Expressions of OPG and RANKL in tibia bone and periosteum of patients with congenital tibial pseudarthrosis of the tibia in children[J].Journal of Clinical Pediatric Surgery,2019,18(06):331.[doi:10.3969/j.issn.1671-6353.2019.04.017]
[3]欧阳雅琦,谢鑑辉.先天性胫骨假关节出院后随访管理的研究进展[J].临床小儿外科杂志,2020,19(03):253.[doi:10.3969/j.issn.1671-6353.2020.03.012]
Ouyang Yaqi,Xie Jianhui.Progress of postoperative follow-ups for congenital pseudarthrosis of the tibia[J].Journal of Clinical Pediatric Surgery,2020,19(06):253.[doi:10.3969/j.issn.1671-6353.2020.03.012]
[4]李安平,胡雄科,赵卫华,等.半骺板阻滞术治疗儿童先天性胫骨假关节手术后踝外翻的临床研究[J].临床小儿外科杂志,2021,20(12):1149.[doi:10.12260/lcxewkzz.2021.12.009]
Li Anping,Hu Xiongke,Zhao Weihua,et al.Clinical study on the hemiepiphyseal treatment for postoperative ankle valgus in children with congenital pseudarthrosis of the tibia[J].Journal of Clinical Pediatric Surgery,2021,20(06):1149.[doi:10.12260/lcxewkzz.2021.12.009]
[5]雷霆,朱光辉,梅海波,等.一期骨搬运及二期包裹式植骨术治疗儿童先天性胫骨假关节手术后大段骨缺损的疗效探讨[J].临床小儿外科杂志,2022,21(04):336.[doi:10.3760/cma.j.cn101785-202110044-008]
Lei Ting,Zhu Guanghui,Mei Haibo,et al.Efficacy of one-stage bone transport and two-stage wrapped bone grafting in the treatment of large bone defect after congenital tibial pseudoarthroplasty in children[J].Journal of Clinical Pediatric Surgery,2022,21(06):336.[doi:10.3760/cma.j.cn101785-202110044-008]
[6]刘尧喜,伍江雁,杨戈,等.儿童先天性胫骨假关节行胫骨近端延长的临床疗效评价[J].临床小儿外科杂志,2024,(02):147.[doi:10.3760/cma.j.cn101785-202204086-009]
Liu Yaoxi,Wu Jiangyan,Yang Ge,et al.Clinical evaluation of proximal tibial extension in children with congenital pseudarthrosis of the tibia[J].Journal of Clinical Pediatric Surgery,2024,(06):147.[doi:10.3760/cma.j.cn101785-202204086-009]
[7]袁淦峰,刘昆,梅海波.先天性胫骨前外侧成角伴踇趾多趾畸形4例及文献复习[J].临床小儿外科杂志,2022,21(01):97.[doi:10.3760/cma.j.cn.101785-202001047-019]
Yuan Ganfeng,Liu Kun,Mei Haibo.Congenital anterolateral tibial angulation with polydactyly of the hallux:a report of 4 cases with a literature review[J].Journal of Clinical Pediatric Surgery,2022,21(06):97.[doi:10.3760/cma.j.cn.101785-202001047-019]
备注/Memo
收稿日期:2021-02-14。
基金项目:湖南省重点研发计划(2020SK2113);湖南省儿童肢体畸形临床医学研究中心(2019SK4006);湖南省出生缺陷协同防治科技重大专项(2019SK1010)
通讯作者:梅海波,Email:meihaibo@sohu.com