临床小儿外科杂志  2020, Vol. 19 Issue (2): 171-175
0
PDF  
胆道闭锁肝纤维化与自体肝生存关系的研究进展
葛亮1 , 詹江华2     
1. 天津医科大学研究生院(天津市, 300070);
2. 天津市儿童医院普外科(天津市, 300134)
摘要:胆道闭锁是婴儿期最严重的肝胆系统疾病之一。肝门-空肠吻合术(Kasai手术)是治疗胆道闭锁的主要手段,但术后自体肝长期生存效果不佳,大部分患儿需要通过肝移植来挽救生命。肝纤维化是影响胆道闭锁患儿自体肝生存的重要因素之一,其发生机制复杂,涉及多种信号通路及细胞因子的调控。Kasai手术后胆汁引流不畅、胆管炎发作都会导致肝纤维化进展,进而发生肝硬化。在完善早期诊断、早期手术、通畅引流胆汁及控制胆管炎的同时,还应积极应对患儿肝纤维化的持续进展,以期达到自体肝的长期生存。
关键词胆道闭锁/病因学; 肝硬化/病因学; 自体肝生存
Relationship between liver fibrosis and native liver survival in infants with biliary atresia
Ge Liang1 , Zhan Jianghua2     
1. Graduate School, Tianjin Medical University, Tianjin 300070, China;
2. Department of General Surgery, Municipal Children's Hospital, Tianjin 300134, China
Abstract: Biliary atresia (BA) is one of the most serious hepatobiliary diseases during infancy.Kasai portoenterostomy has been a standard treatment for BA.However, its long-term postoperative survival of native liver is poor.Most children require liver transplantation for saving their lives.Liver fibrosis is one of the important influencing factors for native liver survival in BA children.The underlying mechanism is so complex as to involve a large variety of signaling pathways and cytokines.Imperfect biliary drainage and postoperative cholangitis may lead to liver fibrogenesis and even cirrhosis.For achieving long-term native liver survival, we should actively intervene to arrest the progression of liver fibrosis.
Key words: Biliary Atresia/ET; Liver Cirrhosis/ET; Native Liver Survival

胆道闭锁(biliary atresia, BA)是婴儿期严重肝胆系统疾病之一,以肝内、外胆管进行性炎症和纤维性梗阻为特征,导致胆汁淤积性肝硬化,如不及时治疗,一般在2岁左右死亡。肝门-空肠吻合术(Kasai手术)是胆道闭锁有效的治疗手段。近年来,随着人们对胆道闭锁认识的加深,我国大陆地区胆道闭锁患儿行Kasai手术比例有了明显提高,2年自体肝生存率也接近60.0%[1]。但是长期自体肝生存情况仍不理想,后期出现肝功能衰竭需要行肝移植来挽救生命。目前研究表明影响Kasai术后自体肝生存的因素包括手术年龄、手术方式、肝纤维化程度、术后黄疸清除情况、术后胆管炎以及激素的应用等[2-5]。其中持续进展的肝纤维化是影响预后的重要因素之一,需在临床工作中提高对其发病机制的认识,预防或减缓肝纤维化发生。

一、胆道闭锁肝纤维化机制

胆道闭锁肝纤维化是一个多步骤并涉及多种因素参与的、受众多因子调控的复杂过程。胆管上皮损伤是胆道闭锁肝纤维化的重要启动因素,肝星状细胞的活化是肝纤维化形成和发展的中心环节。病毒感染或自身免疫反应等因素导致胆管损伤后,各种炎性细胞产生大量炎性因子,激活肝星状细胞产生细胞外基质,并产生抑制基质降解的因子,如纤溶酶原激活物抑制剂1 (plasminogen activator inhibitor 1, PAI-1)及基质金属蛋白酶组织抑制剂1(tissue inhibitor of metalloproteinase-1, TIMP-1),加速肝纤维化进程[6]。增生的肝星状细胞同时经历表型转化形成肌成纤维细胞促进肝纤维化发生。此外,肝细胞、胆管上皮细胞通过上皮-间充质转化(epithelial-mesenchymal transition, EMT)机制转化成肌成纤维细胞和成纤维细胞,合成大量的细胞外基质;肝脏细胞外基质合成大于降解,继而在肝组织中过度沉积,最终导致肝纤维化。

肝星状细胞的活化受到多条信号通路及多种细胞因子的调控,如TGF-β通路、Notch通路及miRNA等。①TGF-β1/Smad通路在肝纤维化中起到了重要作用[7]。TGF-β1通过整合素蛋白ανβ6等因素启动,与受体结合后诱导Smad 2/3磷酸化,磷酸化的Smad 2/3与Smad 4形成络合物。这个络合物向细胞核移动,启动包括细胞外基质蛋白的基因转录,增加细胞外基质(extracellular matrix, ECM)蛋白的表达,同时生成TIMP-1及PAI -1抑制细胞外基质的降解[8, 9]。②Notch信号通路涉及上皮-间充质转化、肝星状细胞和纤维母细胞的激活[10, 11]。慕永平等[12]发现在胆管结扎大鼠模型中胆管增生明显,Notch信号通路明显活化;当Notch信号通路被抑制后,胆管上皮细胞增生和纤维化程度均明显减轻,这表明在胆汁性肝纤维化,肝祖细胞分化为胆管上皮细胞中,Notch信号通路的活化发挥了关键作用,抑制Notch信号通路活化可能是治疗胆汁性肝纤维化的有效途径。③miRNA在肝脏既参与调节炎症反应,也在纤维化形成中发挥重要作用[13]。miR-21作用于磷酸酶与张力蛋白同源物基因(phosphatase and tensin homology deleted on chromosome ten, PTEN)使其表达下调,继而p-Akt表达升高,激活肝星状细胞(hepatic stellate cell, HSC)转变为肌成纤维细胞,进而影响ECM重构、间质纤维化,提示miR-21/PTEN/Akt信号轴在胆道闭锁肝纤维化过程中可能发挥作用[14]。Liu等[15]发现miR-200a在胆道闭锁患儿中显著增高,并与肝脏纤维化进展有关。miR-200a和ZEB1相互作用调控EMT过程,继而影响胆道闭锁肝脏纤维化的生成。Ye等[16]发现胆道闭锁患儿肝组织中miR-145表达下调,ADD3表达增加可能参与胆道闭锁肝纤维化的形成。肝星状细胞活化是肝纤维化发生的重要途径,了解其发生途径,在阻断肝星状细胞活化后,可减缓肝纤维化的发生。

二、Kasai手术与肝纤维化 (一) Kasai手术后肝纤维化的影响因素

影响Kasai手术后肝纤维化进展的临床因素主要包括术后胆汁引流情况及术后胆管炎发作。Kasai手术成功的患儿黄疸多在6个月内消退,术后黄疸快速消退有利于减轻患儿肝损害、减缓肝纤维化进程,从而获得良好的长期自体肝生存情况[17]。术后胆汁引流好,肝内胆管及肝细胞淤胆情况缓解,肝细胞坏死及增生情况改善。但是Kasai手术后胆汁引流通畅仍不能完全阻断肝纤维化的进展,其原因是否与胆道闭锁发病机制有关尚需进一步研究。对于肝内胆道闭锁及部分肝外胆道闭锁,Kasai手术并不能有效地解除胆道梗阻,术后胆汁引流不良,胆汁淤积、胆管炎症反应持续存在,导致肝脏进行性损伤,最终发生肝硬化[18]

众所周知,Kasai手术后胆管炎反复发作预示其预后不良。反复发作的胆管炎将对肝脏造成持续性损害,加速肝硬化过程,导致自体肝生存时间缩短[19]。研究表明肝纤维化Ⅱ、Ⅲ级(Ohkuma's肝纤维化分级标准)BA患儿Kasai手术后发生胆管炎比例较低,早期发生胆管炎的情况较少,基本上没有频发胆管炎,而肝纤维化Ⅳ级患儿术后胆管炎发生率最高,早期胆管炎和频发胆管炎比较常见,说明胆管炎的发作与Kasai手术时肝纤维化程度关系密切[20]。术后胆管炎导致胆小管因炎症、瘢痕等迅速闭塞,肝门部胆管梗阻,胆汁引流不畅,加重肝脏损害;反复发作的胆管炎加重肝脏纤维化而引起门静脉高压。术后胆管炎发生越频繁,程度越重,其胆汁引流越差,肝脏的纤维化程度越严重,自体肝存活时间越短[21, 22]

Kasai手术后肝纤维化与胆汁引流、胆管炎之间的关系应该是相互作用、相互影响的。肝脏纤维化越重,胆汁引流越差,术后黄疸清除率越低[23]。肝纤维化程度严重(Ⅳ级,Ohkuma's分级标准)会阻碍胆汁引流恢复,加重肝内胆汁淤积,严重影响患儿预后[24]。术中肝脏纤维化病理分级是胆管炎发作的影响因素,病理分级高,肝纤维化严重,发生胆管炎的概率增大[25]。通过不断改进Kasai手术引流方式、提高手术技巧可争取获得更好的胆汁引流;同时规范术后抗生素及激素的应用以降低胆管炎的发作,在一定程度上延长了术后自体肝生存时间,但总体自体肝生存状况并没有得到根本改善。胆道闭锁患儿Kasai术后肝纤维化仍持续进展,伴随胆管炎反复发作,最终导致肝硬化。

(二) 肝纤维化与Kasai手术后自体肝生存的关系

Kasai手术目的是重建胆道,通畅引流胆汁,减轻胆汁淤积及胆管损伤,以期达到自体肝的长期生存。几乎所有胆道闭锁患儿在行Kasai手术时均存在不同程度肝纤维化。诸多研究表明手术时肝脏纤维化的程度与术后自体肝生存时间存在相关性。如果Kasai手术时肝脏无桥接纤维化,这样的患儿Kasai手术后5年自体肝生存率有明显提高[26]。BA患儿行Kasai手术时,其肝轻度纤维化、中度纤维化与重度纤维化患儿术后退黄率分别是78.5%、34.4%和24%(P=0.001),说明Kasai手术时肝纤维化程度越重预后越差[23]。BA患儿行Kasai手术时的肝脏病理结果提示轻度肝纤维化与中、重度肝纤维化患儿的自体肝生存时间明显不同,提示BA患儿肝脏纤维化程度越重,预后越差[27]。但也有些学者持不同意见,认为Kasai手术时肝纤维化程度虽然有降低自体肝生存率的趋势,但是肝脏纤维化程度(Ishak肝纤维化分级标准)与自体肝生存时间的相关性没有统计学意义[28, 29]

虽然成功的Kasai手术能够引流胆汁、消除黄疸,但手术并不能完全改变肝脏纤维化的持续进展,并最终发展成肝硬化、门静脉高压,这也是胆道闭锁行肝移植的主要原因。Lampela等[30]研究表明虽然成功实施Kasai手术能够解除胆汁淤积及减轻门管区炎症,但是肝脏纤维化仍然持续进展。Kerola等[31]研究表明在成功实施Kasai手术后,肝组织的胆汁淤积和门管区的炎症得以解决,表现为炎细胞Th1、Th2表达相关的基因减少,然而伴随着胆管增生的纤维化与纤维化相关的collagen-1、a-SMA的基因过表达仍然存在。肝纤维化进展的速度是影响Kasai手术后自体肝生存的重要因素。近年来,有研究比较了胆道闭锁患儿Kasai手术时与肝移植时的肝脏病理检查结果发现,Kasai手术后即便黄疸消退,其肝纤维化程度并没有改善,Kasai手术后肝纤维化仍在持续进行中,但自体肝生存时间长的患儿其肝硬化进展较慢[32]

三、肝纤维化的评估方法

肝组织活检是评估肝纤维化的金标准。常用肝纤维化评分系统包括:Metavir分级系统、Ishak分级系统及Ohkuma's分级标准,国内也有学者制定了胆道闭锁肝纤维化分级标准[33]。因为肝活检作为一种有创检查,术后存在并发症的风险,其结果也可能会受到观察者或者取材的影响,所以肝活检的应用受到了很大限制。门冬氨酸氨基转移酶/血小板指数(aspartate aminotransferase-to-platelet ratio index, APRI)是一项安全、简便、廉价、无创性指标,对于评价胆道闭锁及胆汁淤积综合征患儿的肝纤维化情况均有较高准确性和可靠性[34]。超声弹性成像技术也已广泛应用于胆道闭锁患儿肝纤维化的评估,包括瞬时弹性成像(transient elastography,TE)、声辐射力脉冲成像(acoustic radiation force imaging,ARFI)及剪切波弹性成像(shear wave elastography, SWE)等。胆道闭锁患儿的肝硬度值(liver stiffness measurement, LSM)与肝纤维化呈正相关[35]。Kasai手术后BA患儿的LSM值呈动态变化,且与肝细胞损伤情况及肝纤维化程度密切相关[36]。采用ARFI测量胆道闭锁患儿肝的剪切波速度(shear wave velocity, SWV)值,发现其与肝纤维化程度具有良好的相关性[37]。另外,SWE与胆道闭锁术后肝纤维化程度呈正相关,其诊断肝纤维化的效能优于APRI,两者结合后诊断效能更高[38]

综上所述,在完善早期诊断、早期手术、通畅胆汁引流及控制胆管炎的同时,还应积极应对Kasai手术后肝纤维化的持续进展。将来的工作在规范Kasai手术同时,还需要找出有效的途径延缓甚至阻断肝纤维化进程,从而达到自体肝长期生存的目标。现在看来控制肝纤维化与提倡规范Kasai手术同样重要,需要从事胆道闭锁的广大医务工作者们共同努力,从根本上提高胆道闭锁自体肝生存时间。

参考文献
1
詹江华, 王立. 小儿肝胆外科现状与展望[J]. 临床外科杂志, 2017, 25(12): 890-891. DOI:10.3969/j.issn.1005-6483.2017.12.003.
Zhan JH, Wang L. Current status and future prospects of pediatric hepatobiliary surgery[J]. J Clin Surg, 2017, 25(12): 890-891. DOI:10.3969/j.issn.1005-6483.2017.12.003.
2
Nio M. Japanese Biliary Atresia Registry[J]. Pediatr Surge Int, 2017, 33(12): 1319-1325. DOI:10.1007/s00383-017-4160-x.
3
Sasaki H, Tanaka H, Nio M. Current management of long-term survivors of biliary atresia:over 40 years of experience in a single center and review of the literature[J]. Pediatr Surg Int, 2017, 33(12): 1-7. DOI:10.1007/s00383-017-4163-7.
4
Qiao G, Li L, Cheng W, et al. Conditional probability of survival in patients with biliary atresia after Kasai portoenterostomy:a Chinese population-based study[J]. J Pediatr Surg, 2015, 50(8): 1310-1315. DOI:10.1016/j.jpedsurg.2015.03.062.
5
Davenport M, Parsons C, Tizzard S, et al. Steroids in biliary atresia:single surgeon, single centre, prospective study[J]. J Hepatol, 2013, 59(5): 1054-1058. DOI:10.1016/j.jhep.2013.06.012.
6
高婷, 詹江华, 陈扬, 等. JNK2、TIMP-1及Collagen Ⅲ在胆道闭锁肝纤维化中的作用研究[J]. 临床小儿外科杂志, 2017, 16(2): 127-132. DOI:10.3969/j.issn.1671-6353.2017.02.006.
Gao T, Zhan JH, Chen Y, et al. Effects of JNK2, TIMP-1 and collagen Ⅲ on hepatic fibrosis in patients with biliary atresia[J]. J Clin Ped Sur, 2017, 16(2): 127-132. DOI:10.3969/j.issn.1671-6353.2017.02.006.
7
丁美云, 高婷, 卫园园, 等. P-Smad 3在胆道闭锁肝纤维化中的作用机制研究[J]. 临床小儿外科杂志, 2016, 15(1): 29-33. DOI:10.3969/j.issn.1671-6353.2016.01.009.
Ding MY, Gao T, Wei YY, et al. The study on Mechanism of P-Smad3 in hepatic fibrosis of biliary atresia[J]. J Clin Ped Sur, 2016, 15(1): 29-33. DOI:10.3969/j.issn.1671-6353.2016.01.009.
8
Markovics JA, Araya J, Cambier S, et al. Interleukin-1beta induces increased transcriptional activation of the transforming growth factor beta-activating integrin subunit beta8 through altering chromatin architecture[J]. J Biol Chem, 2011, 286(42): 36864-36874. DOI:10.1074/jbc.M111.276790.
9
Burch ML, Zheng W, Little PJ. Smad linker region phosphorylation in the regulation of extracellular matrix synthesis[J]. Cell Mol Life Sci, 2011, 68(1): 97-107. DOI:10.1007/s00018-010-0514-4.
10
Brzozowa-Zasada M, Piecuch A, Segiet O, et al. The complex interplay between Notch signaling and Snail1 transcription factor in the regulation of epithelial-mesenchymal transition (EMT)[J]. Eur Surg, 2015, 47(5): 218-225. DOI:10.1007/s10353-015-0339-3.
11
Kim DE, Procopio MG, Ghosh S, et al. Convergent roles of ATF3 and CSL in chromatin control of cancer-associated fibroblast activation[J]. J Experimental Medicine, 2017, 214(8): 2349-2368. DOI:10.1084/jem.20170724.
12
慕永平, 张笑, 徐莹, 等. Notch信号通路参与大鼠胆汁性肝纤维化肝祖细胞向胆管上皮细胞分化以及肝纤维化进展[J]. 中华病理学杂志, 2017, 46(6): 400-405. DOI:10.3760/cma.j.issn.0529-5807.2017.06.007.
Mu YP, Zhang X, Xu Y, et al. Notch signaling pathway participates in the differentiation of hepatic progenitor cells into bile duct epithelial cells and progression of hepatic fibrosis in cholestatic liver fibrosis rat[J]. Chin Jo Pathol, 2017, 46(6): 400-405. DOI:10.3760/cma.j.issn.0529-5807.2017.06.007.
13
Huang J, Yu X, Fries JW, et al. MicroRNA function in the profibro genic interplay upon chronic liver disease[J]. Int J Mol Sci, 2014, 15(6): 9360-9371. DOI:10.3390/ijms15069360.
14
Wei J, Feng L, Li Z, et al. MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling[J]. Biomed Pharmacother, 2013, 67(5): 387-392. DOI:10.1016/j.biopha.2013.03.014.
15
Liu HY, Chen YH, Pang SY, et al. MiR-200a/ZEB1 pathway in liver fibrogenesis of biliary atresia[J]. International Scholarly and Scientific Research & Innovation, 2017, 11(2): 49-54.
16
Ye Y, Li Z, Feng Q. Downregulation of microRNA-145 may contribute to liver fibrosis in biliary atresia by targeting ADD3[J]. PLoS ONE, 2017, 12(9): e0180896. DOI:10.1371/journal.pone.0180896.
17
Koga H, Wada M, Nakamura H, et al. Factors influencing jaundice-free survival with the native liver in ostportoenterostomy biliary atresia patients:results from a single institution[J]. J Pediatr Surg, 2013, 48(12): 2368-2372. DOI:10.1016/j.jpedsurg.2013.08.007.
18
Nakamura H, Koga H, Wada M, et al. Reappraising the portoenterostomy procedure according to sound physiologic/anatomic principles enhances postoperative jaundice clearance in biliary atresia[J]. Pediatr Surg Int, 2012, 28(2): 205-209. DOI:10.1007/s00383-011-3019-9.
19
宋亭亭, 詹江华, 高伟, 等. 胆道闭锁Kasai术后肝脏病理改变的研究[J]. 中华小儿外科杂志, 2014, 35(8): 603-607. DOI:10.3760/cma.j.issn.0253-3006.2014.08.011.
Song TT, Zhan JH, Gao W, et al. Pathological changes of liver in children with biliary atresia after Kasai portoenterstomy[J]. Chin J Pediatr Surg, 2014, 35(8): 603-607. DOI:10.3760/cma.j.issn.0253-3006.2014.08.011.
20
熊希倩, 詹江华, 胡晓丽, 等. 胆道闭锁患儿肝纤维化及炎症细胞浸润与Kasai术后胆管炎的关系[J]. 天津医药, 2018, 46(7): 692-695. DOI:10.11958/20180078.
Xiong XQ, Zhan JH, Hu XL, et al. Correlation between liver fibrosis inflammatory infiltration and postoperative cholangitis after Kasai operation for children with biliary atresia[J]. Tianjin Medical Journal, 2018, 46(7): 692-695. DOI:10.11958/20180078.
21
Wu ET, Chen HL, Ni YH, et al. Bacterial cholangitis in patients with biliary atresia:impact on short-term outcome[J]. Pediatr Surg Int, 2001, 17(5-6): 390-395. DOI:10.1007/s003830000573.
22
Hung PY, Chen CC, Chen WJ, et al. Long-term prognosis of patients with biliary atresia:a 25 year summary[J]. J Pediatr Gastroenterol Nutr, 2006, 42(2): 190. DOI:10.1097/01.mpg.0000189339.92891.64.
23
Roy P, Chatterjee U, Ganguli M, et al. A histopathological study of liver and biliary remnants with clinical outcome in cases of extrahepatic biliary atresia[J]. Indian J Pathol Microbiol, 2010, 53(1): 101-105. DOI:10.4103/0377-4929.59194.
24
Salzedas-Netto AA, Chinen E, De Oliveira DF, et al. Grade Ⅳ Fibrosis interferes in biliary drainage after Kasai procedure[J]. Transplant Proc, 2014, 46(6): 1781-1783. DOI:10.1016/j.transproceed.2014.05.045.
25
董淳强, 杨体泉, 董昆. 胆道闭锁术后早期胆管炎风险因素分析[J]. 临床小儿外科杂志, 2013, 12(5): 348-353. DOI:10.3969/j.issn.1671-6353.2013.05.002.
Dong CQ, Yang TQ, Dong K. Risk factors of postoperative early cholangitis in biliary atresia[J]. J Clin Ped Sur, 2013, 12(5): 348-353. DOI:10.3969/j.issn.1671-6353.2013.05.002.
26
Webb NL, Jiwane A, Ooi CY, et al. Clinical significance of liver histology on outcomes in biliary atresia[J]. J Paediatr Child Health, 2017, 53(3): 252-256. DOI:10.1111/jpc.13371.
27
Shteyer E, Ramm GA, Xu C, et al. Outcome after portoenterostomy in biliary atresia:pivotal role of degree of liver fibrosis and intensity of stellate cell activation[J]. J Pediatr Gastroenterol Nutr, 2006, 42(1): 93-99. DOI:10.1097/01.mpg.0000189324.80323.a6.
28
Superina R, Magee JC, Brandt ML, et al. The anatomic pattern of biliary atresia identified at time of Kasai hepatoportoenterostomy and early postoperative clearance of jaundice are significant predictors of transplant-free survival[J]. Ann Surg, 2011, 254(4): 577-585. DOI:10.1097/SLA.0b013e3182300950.
29
Davenport M, Puricelli V, Farrant P, et al. The outcome of the older (≥100 days) infant with biliary atresia[J]. J Pediatr Surg, 2004, 39(4): 575-581. DOI:10.1016/j.jpedsurg.2003.12.014.
30
Lampela H, Kosola S, Heikkilä P, et al. Native liver histology after successful portoenterostomy in biliary atresia[J]. J Clin Gastroenterol, 2014, 48(8): 721-728. DOI:10.1097/MCG.0000000000000013.
31
Kerola A, Lampela H, Lohi J, et al. Molecular signature of active fibrogenesis prevails in biliary atresia after successful portoenterostomy[J]. Surg, 2017, 162(3): 548-556. DOI:10.1016/j.surg.2017.04.013.
32
余晨, 詹江华, 高伟, 等. 胆道闭锁Kasai术后肝移植患儿不同自体肝生存的临床与病理分析[J]. 临床小儿外科杂志, 2017, 16(6): 552-558. DOI:10.3969/j.issn.1671-6353.2017.06.007.
Yu C, Zhan JH, Gao W, et al. Clinicopathological analysis with different native liver survivals for biliary atresia after Kasai[J]. J Clin Ped Sur, 2017, 16(6): 552-558. DOI:10.3969/j.issn.1671-6353.2017.06.007.
33
丁美云, 詹江华, 刘丹丹, 等. 胆道闭锁肝纤维化分级[J]. 中华小儿外科杂志, 2015, 36(11): 866-872. DOI:10.3760/cma.j.issn.0253-3006.2015.11.016.
Ding MY, Zhan JH, Liu DD, et al. Grading of hepatic fibrosis in biliary atresia[J]. Chin J Pediatr Surg, 2015, 36(11): 866-872. DOI:10.3760/cma.j.issn.0253-3006.2015.11.016.
34
管志伟, 詹江华, 胡晓丽, 等. APRI评价胆道闭锁和胆汁淤积综合征肝脏纤维化程度的临床意义[J]. 中华小儿外科杂志, 2012, 33(11): 815-819. DOI:10.3760/cma.j.issn.0253-3006.2012.11.004.
Guan ZW, Zhan JH, Hu XL, et al. The assessment and significance of liver fibrosis in children with biliary atresia[J]. Chin J Pediatr Surg, 2012, 33(11): 815-819. DOI:10.3760/cma.j.issn.0253-3006.2012.11.004.
35
Uchida H, Sakamoto S, Kobayashi M, et al. The degree of spleen stiffness measured on acoustic radiation force impulse elastography predicts the severity of portal hypertension in patients with biliary atresia after portoenterostomy[J]. J Pediatr Surg, 2015, 50(4): 559-564. DOI:10.1016/j.jpedsurg.2014.12.026.
36
舒俊, 陈亚军, 张廷冲, 等. 胆道闭锁术后肝脏FibroScan值预测价值研究[J]. 中华小儿外科杂志, 2014, 35(7): 514-518. DOI:10.3760/cma.j.issn.0253-3006.2014.07.009.
Shu J, Chen YJ, Zhang TC, et al. Predictive values of liver FibroScan in postoperative biliary atresia[J]. J Pediatr Surg, 2014, 35(7): 514-518. DOI:10.3760/cma.j.issn.0253-3006.2014.07.009.
37
剧红娟, 田晖, 李英超, 等. 声脉冲辐射力成像技术对胆道闭锁肝纤维化的初步研究[J]. 中华超声影像学杂志, 2015, 24(5): 447-449. DOI:10.3760/cma.j.issn.1004-4477.2015.05.024.
Ju HJ, Tian H, Li YC, et al. Preliminary study of hepatic fibrosis in biliary atresia by acoustic radiation for impulse imaging[J]. Chin J Ultrasonogr, 2015, 24(5): 447-449. DOI:10.3760/cma.j.issn.1004-4477.2015.05.024.
38
Chen S, Liao B, Zhong Z, et al. Supersonic shearwave elastography in the assessment of liver fibrosis for postoperative patients with biliary atresia[J]. Sci Rep, 2016, 6: 31057. DOI:10.1038/srep31057.