胆道闭锁(biliary atresia,BA)是最严重的婴幼儿胆汁淤积性疾病,需尽早行肝门空肠吻合术(Kasai术)。血清胆红素是BA患儿术后最常用的预后指标,如持续升高,则提示预后不良[1-2]。然而在术后胆红素降至正常的患儿中,仍有约71%出现脾肿大,约45%出现血小板减少,约18%于术后2年内需要接受肝移植[3-4]。胆汁酸作为胆固醇在肝脏内的代谢产物,被广泛应用于肝纤维进展及预后的监测中,近年来研究发现血清胆汁酸水平与BA疾病进展具有潜在相关性[5-6]。为弥补血清胆红素单一指标评估BA预后的局限性,本研究通过回顾性分析115例Kasai术后退黄成功的BA患儿临床资料及随访结果,探索血清胆汁酸水平在BA手术后退黄成功患儿预后评估中的价值。
资料与方法 一、研究对象及纳排标准本研究为回顾性研究,选择2020年1月1日至2021年12月31日在复旦大学附属儿科医院接受Kasai手术的BA患儿作为研究对象。病例纳入标准:①术后6个月内退黄成功(即血清总胆红素 < 20 μmol/L);②有术后第6个月血清胆汁酸随访记录。排除标准:术后6个月内行肝移植、死亡或失访。本研究已获得复旦大学附属儿科医院伦理委员会批准(复儿伦审[2022] — 17号)。患儿家长均知情并签署知情同意书。
研究期间共有323例BA患儿完成Kasai手术,其中术后6个月内接受肝移植81例、死亡15例、失访11例,另有72例血清胆红素水平未降至正常。故按照上述纳入与排除标准,共144例纳入研究,其中29例因无术后6个月胆汁酸检查记录被剔除,最终有115例纳入本研究。
二、分组方式因纳入研究的患儿术后第6个月血清胆汁酸水平为3~263 μmol/L(中位数为34 μmol/L,图 1),故以34 μmol/L作为分组依据,将患儿分为两组,胆汁酸≤34 μmol/L组(54例)和胆汁酸>34 μmol/L组(61例)。
记录BA患儿手术前后临床数据、实验室检查及预后情况。基线资料包括:性别、手术日龄。实验室检查包括:肝组织病理纤维化分级(Batts-Ludwig评分系统)、血清总胆红素、天冬氨酸氨基转移酶(aspartate transaminase, AST)、丙氨酸氨基转移酶(alanine transaminase, ALT)、γ-谷氨酰转移酶(gam ma-glutamyl transpeptidase, GGT)、白蛋白、国际标准化比值、总胆汁酸、血小板和25-羟维生素D水平。肝脾参数包括:B超检测脾脏左肋缘下长度及肝剪切波弹性成像测定[7]。预后评价指标包括:胆管炎、前哨事件(血小板减少、脾肿大、胃底食管静脉曲张或消化道出血)、肝移植情况等[8]。
本研究中胆管炎定义为发热>38℃,伴胆红素升高、大便颜色变浅或黄疸。血小板减少定义为血小板计数 < 150×109/L。脾肿大定义为脾脏下缘超过左侧肋缘下20 mm。消化道出血定义为经内镜证实为静脉曲张所致呕血或便血[8]。
四、统计学处理使用SPSS 26.0进行统计分析。不服从正态分布的连续型变量(手术日龄、实验室检查指标、肝脾参数)采用M(Q1, Q3)表示,两组比较采用Wilcoxon秩和检验。分类变量(性别、胆管炎、前哨事件及肝移植发生率)采用例数(百分比)表示,两组比较采用卡方检验或Fisher精确概率法。两组相关性分析采用Spearman法,两组自体肝生存时间比较采用Kaplan-Meier曲线。P < 0.05为差异有统计学意义。
结果 一、两组临床特征及实验室检查结果比较两组在性别、手术日龄、肝纤维化病理分级、术后6个月内胆管炎和肝脏前哨事件(血小板减少和脾肿大)发生率方面比较,差异均无统计学意义(P>0.05,表 1)。胆汁酸≤34 μmol/L组患儿术后第24个月的总胆红素、AST、ALT、GGT、胆汁酸水平、脾肋下长度、肝剪切波弹性成像值明显低于胆汁酸>34 μmol/L组,而血小板计数和白蛋白水平高于胆汁酸>34 μmol/L组,差异均具有统计学意义(P < 0.05);两组国际标准化比值和25-羟维生素D水平相似,差异无统计学意义(P>0.05,表 2)。两组术后6个月和24个月血清胆汁酸水平之间具有较强相关性(r=0.623, P < 0.001)。
胆汁酸≤34 μmol/L组患儿术后24个月内血小板减少、脾肿大及前哨事件总发生率明显低于胆汁酸>34 μmol/L组,差异具有统计学意义(P < 0.05,表 3);而胆管炎发生率差异无统计学意义(29.6%比37.7%,P=0.361)。胆汁酸≤34 μmol/L组患儿术后24个月内肝移植率明显低于胆汁酸>34 μmol/L组(3.7%比26.2%),差异有统计学意义(P < 0.001)。见表 3、图 3。
BA患儿Kasai术后3~6个月血清胆红素降至正常,则术后10年自体肝存活率可达75% ~90%[9-10]。但仍有部分退黄成功患儿肝纤维化持续进展,需要肝移植才能长期存活,而此时已降至正常范围的胆红素指标无法评估该部分患儿预后情况。既往文献报道及长期随访中发现部分退黄成功的BA患儿血清胆汁酸水平依然处于波动状态,且与疾病进展存在一定关联[5-6]。本研究发现Kasai术后6个月血清胆汁酸≤34 μmol/L的患儿术后24个月肝功能指标更好,包括总胆红素、AST、ALT和GGT等肝损伤标志物均明显降低;前哨事件的发生率也明显降低,如血小板减少、脾肿大等。更重要的是,血清胆汁酸≤34 μmol/L的患儿术后2年肝移植率仅3.7%,而胆汁酸水平>34 μmol/L的患儿肝移植率为26.2%,提示术后胆汁酸水平与自体肝生存等重要预后指标可能存在高度相关。
随访本研究中323例BA患儿术后自体肝黄疸清除率发现,术后3个月黄疸清除率为40.6%,术后6个月达48.1%。为纳入更多病例,本研究选择术后6个月退黄成功作为入组标准。根据健康大龄儿童和成人胆汁酸水平上限为10 μmol/L,如选择该截断值,则仅有15例患儿术后6个月胆汁酸水平处于该范围内。空腹且无口服熊去氧胆酸的健康婴儿胆汁酸水平临界值处于20~30 μmol/L水平,而术后6个月BA患儿均每日口服熊去氧胆酸,可能增加血清胆汁酸水平,故取115例入组患儿血清胆汁酸水平中位数34 μmol/L作为分组标准[11-13]。
Kasai术后BA患儿血清胆汁酸水平仍处于较高水平可能是肝细胞对胆汁淤积长期适应的结果[14]。胆汁淤积状态时肝细胞会下调基底膜的钠- 牛磺胆酸盐共转运多肽(Na+-taurocholate cotransporting polypeptide, NTCP),限制血液中胆汁酸吸收入肝[15];同时上调有机溶质转运蛋白α/β(organic solute transporter alfa/beta, OST α/β),促进胆汁酸入血[16]。即使在胆汁淤积情况缓解以后,肝细胞也可能继续保持NTCP和OST α/β的这些改变,由此导致血清胆汁酸处于持续高水平。
本研究的局限性在于:①部分患儿术后未采集胆汁酸指标导致入组病例数量下降; ②抽血前进食或口服熊去氧胆酸可能影响血清胆汁酸水平,尽管我们在随访中告知家长空腹抽血,但仍不能保证所有患儿特别是婴儿均处于禁食状态[13]; ③小部分退黄成功患儿术后6个月已出现肝脏前哨事件,如样本量足够大,在更早时间点(如术后3个月)检测胆汁酸水平可能提供更多有价值信息。
本研究结果提示血清胆汁酸在评估BA退黄成功患儿预后中具有重要价值,但并不能确认胆汁酸水平是否为肝损伤加重的驱动因素。正在进行的随机、双盲、安慰剂对照的胆汁酸转运蛋白抑制剂A4250临床试验将进一步探讨该问题[17-18]。Kasai术后胆红素降至正常的患儿血清胆汁酸水平升高提示预后较差的可能,未来需要进行前瞻性研究以进一步探讨血清胆汁酸的预测价值,以及如何更好应用到临床诊疗中。
利益冲突 所有作者声明不存在利益冲突
作者贡献声明 杨一凡、陈功负责论文设计,杨一凡、姜璟、钱曼宁负责数据收集,杨一凡、姜璟负责研究结果分析与讨论,杨一凡负责论文撰写;郑珊、陈功负责全文知识性内容的审读与修正
[1] |
Okubo R, Nio M, Sasaki H, et al. Impacts of early Kasai portoenterostomy on short-term and long-term outcomes of biliary atresia[J]. Hepatol Commun, 2021, 5(2): 234-243. DOI:10.1002/hep4.1615 |
[2] |
郑露露, 吴一波, 吴伟, 等. Ⅲ型胆道闭锁Kasai手术后患儿自体肝中长期生存情况的影响因素分析[J]. 临床小儿外科杂志, 2023, 22(11): 1045-1049. Zheng LL, Wu YB, Wu W, et al. Middle/long-term prognosis and influencing factors of Kasai portoenterostomy on type Ⅲ biliary atresia[J]. J Clin Ped Sur, 2023, 22(11): 1045-1049. DOI:10.3760/cma.j.cn101785-202203017-008 |
[3] |
Wang ZM, Chen YJ, Peng CH, et al. Five-year native liver survival analysis in biliary atresia from a single large Chinese center: the death/liver transplantation hazard change and the importance of rapid early clearance of jaundice[J]. J Pediatr Surg, 2019, 54(8): 1680-1685. DOI:10.1016/j.jpedsurg.2018.09.025 |
[4] |
Fanna M, Masson G, Capito C, et al. Management of biliary atresia in France 1986 to 2015:long-term results[J]. J Pediatr Gastroenterol Nutr, 2019, 69(4): 416-424. DOI:10.1097/MPG.0000000000002446 |
[5] |
Johansson H, Svensson JF, Almström M, et al. Regulation of bile acid metabolism in biliary atresia: reduction of FGF19 by Kasai portoenterostomy and possible relation to early outcome[J]. J Intern Med, 2020, 287(5): 534-545. DOI:10.1111/joim.13028 |
[6] |
Virk MK, Mian MUM, Bashir DA, et al. Elevated bile acids are associated with left ventricular structural changes in biliary atresia[J]. Hepatol Commun, 2023, 7(5): e0109. DOI:10.1097/HC9.0000000000000109 |
[7] |
Yokoyama S, Ishigami M, Honda T, et al. Spleen stiffness by 2-D shear wave elastography is the most accurate predictor of high-risk esophagogastric varices in children with biliary atresia[J]. Hepatol Res, 2019, 49(10): 1162-1168. DOI:10.1111/hepr.13381 |
[8] |
Bass LM, Shneider BL, Henn L, et al. Clinically evident portal hypertension: an operational research definition for future investigations in the pediatric population[J]. J Pediatr Gastroenterol Nutr, 2019, 68(6): 763-767. DOI:10.1097/MPG.0000000000002333 |
[9] |
Hukkinen M, Kerola A, Lohi J, et al. Very low bilirubin after portoenterostomy improves survival of the native liver in patients with biliary atresia by deferring liver fibrogenesis[J]. Surgery, 2019, 165(4): 843-850. DOI:10.1016/j.surg.2018.10.032 |
[10] |
Hukkinen M, Ruuska S, Pihlajoki M, et al. Long-term outcomes of biliary atresia patients surviving with their native livers[J]. Best Pract Res Clin Gastroenterol, 2022, 56/57: 101764. DOI:10.1016/j.bpg.2021.101764 |
[11] |
Polkowska G, Polkowski W, Kudlicka A, et al. Range of serum bile acid concentrations in neonates, infants, older children, and in adults[J]. Med Sci Monit, 2001, 7(Suppl 1): 268-270. |
[12] |
Kawasaki H, Yamanishi Y, Miyake M, et al. Age-and sex-related profiles of serum primary and total bile acids in infants, children and adults[J]. Tohoku J Exp Med, 1986, 150(3): 353-357. DOI:10.1620/tjem.150.353 |
[13] |
Baghdasaryan A, Chiba P, Trauner M. Clinical application of transcriptional activators of bile salt transporters[J]. Mol Aspects Med, 2014, 37(100): 57-76. DOI:10.1016/j.mam.2013.12.001 |
[14] |
Chen HL, Liu YJ, Chen HL, et al. Expression of hepatocyte transporters and nuclear receptors in children with early and late-stage biliary atresia[J]. Pediatr Res, 2008, 63(6): 667-673. DOI:10.1203/PDR.0b013e318170a6b5 |
[15] |
Boyer JL, Trauner M, Mennone A, et al. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTα-OSTβ in cholestasis in humans and rodents[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(6): G1124-G1130. DOI:10.1152/ajpgi.00539.2005 |
[16] |
Shneider BL, Fox VL, Schwarz KB, et al. Hepatic basolateral sodium-dependent-bile acid transporter expression in two unusual cases of hypercholanemia and in extrahepatic biliary atresia[J]. Hepatology, 1997, 25(5): 1176-1183. DOI:10.1002/hep.510250521 |
[17] |
Karpen SJ, Kelly D, Mack C, et al. Ileal bile acid transporter inhibition as an anticholestatic therapeutic target in biliary atresia and other cholestatic disorders[J]. Hepatol Int, 2020, 14(5): 677-689. DOI:10.1007/s12072-020-10070-w |
[18] |
陈功, 朱叶, 武少静. 胆汁酸代谢相关药物在胆道闭锁治疗中的应用与展望[J]. 临床小儿外科杂志, 2020, 19(6): 473-476. Chen G, Zhu Y, Wu SJ. Applications and future prospects of drugs related to bile acid metabolism in biliary atresia[J]. J Clin Ped Sur, 2020, 19(6): 473-476. DOI:10.3969/j.issn.1671-6353.2020.06.002 |