临床小儿外科杂志  2024, Vol. 23 Issue (7): 620-626  DOI: 10.3760/cma.j.cn101785-202406025-004

引用本文  

闫崇阳, 赵力运, 宋书波, 等. 婴幼儿法洛四联症完全矫治术后重症监护室滞留的危险因素及列线图模型构建[J]. 临床小儿外科杂志, 2024, 23(7): 620-626.   DOI: 10.3760/cma.j.cn101785-202406025-004
Yan CY, Zhao LY, Song SB, et al. Risk factors and nomogram model construction for prolonged intensive care unit stay after complete correction of tetralogy of Fallot in infants and young children[J]. J Clin Ped Sur, 2024, 23(7): 620-626.   DOI: 10.3760/cma.j.cn101785-202406025-004

基金项目

河南省医学科技攻关计划项目(SBGJ202001005)

通信作者

范太兵,Email: fantaibing@163.com

文章历史

收稿日期:2024-06-13
婴幼儿法洛四联症完全矫治术后重症监护室滞留的危险因素及列线图模型构建
闫崇阳1 , 赵力运2 , 宋书波2 , 梁维杰2 , 袁心刚2 , 李萌浩2 , 范太兵2     
1. 郑州大学华中阜外医院心外科,郑州 451464;
2. 河南省人民医院 阜外华中心血管病医院儿童心脏中心,郑州 451464
摘要目的 探讨婴幼儿法洛四联症(tetralogy of Fallot, TOF)完全矫治术后重症监护室(intensive care unit, ICU)滞留的危险因素,并构建具有预测术后ICU滞留风险性能的列线图。方法 回顾性分析2021年1月至2024年3月于郑州大学华中阜外医院行一期完全矫治术的157例TOF患儿资料,根据术后是否发生ICU滞留分为滞留组(n=40)和非滞留组(n=117)。收集患儿术前体重,结果采用最小绝对收缩与选择算子(the least absolute shrinkage and selection operator, LASSO)回归、单因素及多因素Logistic回归分析,确定术后ICU滞留的独立预测因素,在此基础上绘制列线图,并采用受试者操作特征(receiver operating characteristic, ROC)曲线评价列线图的预测价值。结果 多因素Logistic回归分析显示,患儿术前低体重(OR=0.607, 95%CI: 0.391~0.890, P=0.015)、中性粒细胞-淋巴细胞比值高(OR=2.499, 95%CI:1.483~4.680, P<0.001)、术中体外循环时间长(OR=1.037, 95%CI:1.006~1.078, P=0.034),术后辅助机械通气时间长(OR=1.094, 95%CI:1.057~1.149, P<0.001)和发生并发症(OR=14.632, 95%CI:3.074~94.866, P=0.002)是术后ICU滞留风险较高的独立预测因素。在内部验证中,ROC曲线对婴幼儿法洛四联症完全矫治术后ICU滞留风险列线图的预测价值结果显示,该模型的曲线下面积为0.981(95%CI:0.965~0.998)。结论 基于体重、术前中性粒细胞-淋巴细胞比值、术中体外循环时间,术后辅助机械通气时间和发生并发症构建的列线图,对婴幼儿法洛四联症完全矫治术后ICU滞留的发生风险具有较高的预测价值。
关键词列线图    法洛四联症完全矫治术    危险因素    外科手术    儿童    
Risk factors and nomogram model construction for prolonged intensive care unit stay after complete correction of tetralogy of Fallot in infants and young children
Yan Chongyang1 , Zhao Liyun2 , Song Shubo2 , Ling Weijie2 , Yuan Xingang2 , Li Menghao2 , Fan Taibing2     
1. Department of Cardiac Surgery, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou 451464, China;
2. Henan Provincial People's Hospital Fuwai Central Cardiovascular Hospital Children 's Heart Center, Zhengzhou 451464, China
Abstract: Objective To investigate the risk factors for prolonged intensive care unit (ICU) stay after complete correction of tetralogy of Fallot (TOF) in infants and young children and to construct a nomogram that predicts the risk of postoperative ICU stay. Methods A retrospective analysis was conducted on 157 children with TOF who underwent complete correction surgery at the Fuwai Central Cardiovascular Hospital Children's Heart Center from January 2021 to March 2024.The patients were divided into two groups based on whether they experienced prolonged ICU stay postoperatively: the prolonged stay group (n=40) and the non-prolonged stay group (n=117).Clinical data of the patients were collected, and the least absolute shrinkage and selection operator (LASSO) regression, univariate, and multivariate logistic regression analysis were performed to identify independent predictors of prolonged ICU stay.A nomogram was then constructed based on these predictors, and its predictive value was evaluated using the receiver operating characteristic (ROC) curve. Results Multivariate logistic regression analysis showed that preoperative low body weight (OR=0.607, 95%CI: 0.391~0.890, P=0.015), high neutrophil-lymphocyte ratio (NLR) (OR=2.499, 95%CI: 1.483~4.680, P < 0.001), longer cardiopulmonary bypass time during surgery (OR=1.037, 95%CI: 1.006~1.078, P=0.034), longer duration of postoperative mechanical ventilation (OR=1.094, 95%CI: 1.057~1.149, P < 0.001), and occurrence of complications (OR=14.632, 95%CI: 3.074~94.866, P=0.002) were independent predictors of prolonged ICU stay.In internal validation, the ROC curve showed that the nomogram had a good predictive performance for the risk of prolonged ICU stay after complete correction of TOF in infants and young children, with an area under the curve of 0.981(95%CI: 0.965~0.998). Conclusions The nomogram based on body weight, preoperative NLR, cardiopulmonary bypass time, postoperative mechanical ventilation duration, and occurrence of complications has a high predictive value for the risk of prolonged ICU stay after complete correction of TOF in infants and young children.
Key words: Nomogram    Complete Correction of Tetralogy of Fallot    Risk Factors    Surgical Procedures, Operative    Child    

法洛四联症(tetralogy of Fallot, TOF)是最为常见的紫绀型先天性心脏病,占所有先天性心脏病的5%~7%,大多数肺动脉发育良好的TOF患儿可行一期完全矫治手术[1]。近年来随着国内外围产医学、体外循环、麻醉技术、手术方式微创化及术后重症医疗技术的发展,多数患儿预后较好,再手术率低[2-4]。但仍有部分TOF患儿由于术前基础状态、心内结构畸形以及手术创伤等因素,术后易出现重症监护室(intensive care unit, ICU)滞留风险[5]。术后ICU滞留时间可以很好地评价即刻手术效果及短期预后,具有重要的临床价值。列线图是通过结合一些能够影响患者最终结局的因素构建出的一种统计模型,可以将复杂的结果简单、精准并做到可视化,便于临床医师对患者进行术前评估[6-7]。本研究主要探讨婴幼儿TOF完全矫治术后ICU滞留的潜在危险因素,并构建临床列线图,帮助医务人员对部分可控因素尽早干预,以改善患儿的预后。

1、资料与方法 (1.1) 一临床资料

本研究为回顾性临床研究。选取2021年1月至2024年3月期间,在郑州大学华中阜外医院接受TOF完全矫治术的157例患儿作为研究对象。所有患儿均通过心脏超声检查及心脏血管CTA确诊TOF。病例纳入标准:①年龄<3岁;②首次接受TOF完全矫治术;③临床资料完整。排除标准:①入院后即刻入住ICU;②行TOF姑息术;③术前合并脑、肺、肾等器官功能异常;④合并肺动脉闭锁等其他复杂畸形。本研究经阜外华中心血管病医院伦理委员会审核通过[(2023)伦审第(89)号],患儿家属均知情同意。

(1.2) 二研究方法

收集患儿在院期间的病例资料:①一般基线资料:年龄、性别、体重、术前缺氧发作史、呼吸道感染史、体肺侧支循环、外周血氧饱和度(peripheral blood oxygen saturation, PaO2)等;②术前影像学检查:McGoon比值、Nakata指数、跨肺动脉瓣环压差、心胸比、主动脉骑跨率、室间隔缺损(ventricular septal defect, VSD)大小等;③术前实验室检查:白细胞计数(white blood cell count, WBC)、中性粒细胞-淋巴细胞比值(neutrophil-lymphocyte ratio, NLR)、C-反应蛋白(c-reactive protein, CRP)、纤维蛋白原(fibrinogen, FIB)、乳酸脱氢酶(lactate dehydrogenase, LDH)、总蛋白(total protein, TP)、白蛋白(albumin, ALB)等;④术中指标:手术入路方式、体外循环(cardiopulmonary bypass time, CPB)时间、主动脉阻断(aortic occlusion, ACC)时间、是否跨瓣环补片等;⑤术后指标:B型钠尿肽(B-type natriuretic peptide, BNP)、血肌酐(serum creatinine, Scr)、白细胞计数、NLR、C-反应蛋白、辅助机械通气时间、术后并发症等。

采用百分位数法进行临界值的选择。将所有患儿根据ICU滞留时间进行排序,以本研究人群的第75百分位数为界限,将患儿术后ICU滞留时间≥4.75 d定义为监护室滞留。根据术后是否发生监护室滞留分为滞留组(n=40)和非滞留组(n=117)。

(1.3) 三统计学处理

数据分析采用R 4.4.0。连续型变量采用Shapiro-Wilk检验进行正态性检验。若服从正态分布,以x±s表示;若不服从正态分布,则以M(Q1, Q3)表示,组间比较采用两独立样本Wilcoxon秩和检验。分类变量以数值和百分比表示,组间比较采用χ2检验或Fisher精确概率法。P < 0.05为差异具有统计学意义。

对于所有可能导致术后监护室滞留的变量,通过最小绝对收缩与选择算子(the least absolute shrinkage and selection operator, LASSO)回归进行筛选,选取具有临床价值的变量纳入多因素Logistic回归分析中,确定术后监护室滞留风险的独立相关因素,并计算其OR值与95%CI,最后构建列线图。由于本研究无外部扩展性验证数据集,采用Bootstrap重复抽样法进行模型的内部验证,并绘制校准曲线评价模型的一致性。采用受试者操作特征(receiver operating characteristic, ROC)曲线分析,计算曲线下面积(area under the curve, AUC)评估列线图模型的预测性能。AUC越接近1说明该模型预测效果越准确,若AUC>0.75,则认为所建立的列线图模型预测性能较好[8]

2、结果 (2.1) 一两组患儿临床资料比较

根据纳排标准,最终入选157例患儿,其中男66例,女91例,年龄1~36个月。死亡1例,病死率0.63%(1/157),死亡原因为多脏器功能衰竭。两组患儿术后主要并发症包括:低心排出量综合征13例(滞留组7例,非滞留组6例),肺部感染9例(滞留组8例,非滞留组1例)、残余分流4例(滞留组2例,非滞留组2例)、急性肾损伤行腹膜透析3例(滞留组2例,非滞留组1例)、体外膜肺氧合(extracorporeal membrane oxygenation, ECMO)1例(为滞留组患儿)、急性脑出血1例(为滞留组1例患儿),均经积极治疗后痊愈或好转。滞留组(n=40)和非滞留组(n=117)患儿术前年龄、性别、跨肺动脉瓣压差、主动脉与主肺动脉内径比值及术后炎症指标等差异均无统计学意义(P>0.05);见表 1

表 1 两组法洛四联症患儿临床资料比较 Table 1 Comparison of clinical data between two groups of children with tetralogy of Fallot
(2.2) 二TOF患儿术后监护室滞留风险的多因素Logistic回归分析

通过Lasso回归对纳入的潜在预测变量进行筛选(图 1),剔除无意义的变量以降低模型的复杂度和过拟合风险[9]。筛选出的变量为体重、术前NLR、术中体外循环时间,术后辅助机械通气时间和发生并发症,将其纳入多因素Logistic回归分析,结果显示,低体重(P=0.015)、术前NLR高(P < 0.001)、术中体外循环时间长(P=0.034),术后辅助机械通气时间长(P < 0.001)和发生并发症(P=0.002)是术后ICU滞留风险的独立预测因素;见表 2


图 1 绘制LASSO回归交叉验证曲线 Fig.1 Plotting the LASSO regression cross-validation curve   LASSO: 最小绝对收缩与选择算子;在最小值1SE(λ=0.0404)处绘制垂直线,筛选出对构建预测模型贡献较大的5个非零变量

表 2 TOF患儿术后监护室滞留风险多因素Logistic回归分析结果 Table 2 Multivariate Logistic regression analysis results of risk factors for prolonged ICU stay in children with TOF post-surgery
(2.3) 三TOF患儿术后监护室滞留风险预测列线图模型的构建与评价

基于以上5个独立预测因素将Logistic回归模型可视化并构建列线图(图 2),对体重、术前NLR、术中体外循环时间,术后辅助机械通气时间和发生并发症进行分项计分。总分为各项目对应分值之和,以此来确定术后ICU滞留风险,总分越高则表明术后监护室滞留的风险越高。ROC曲线下面积为0.981(95%CI: 0.965~0.998)(图 3),说明该模型对婴幼儿TOF完全矫治术后ICU滞留风险的预测能力较好,且该预测模型与实际观察结果之间具有良好的一致性(图 4)。


图 2 预测婴幼儿法洛四联症完全矫治术后ICU滞留风险的列线图 Fig.2 Nomogram for predicting the risk of prolonged ICU stay after complete correction of tetralogy of Fallot in infants and young children   ICU:重症监护室


图 3 TOF患儿术后重症监护室滞留风险列线图模型的ROC曲线验证 Fig.3 ROC curve validation of the nomogram model for predicting the risk of prolonged ICU stay in children with TOF post-surgery   TOF:法洛四联症;ROC:受试者操作特征;本模型AUC=0.981(95%CI:0.965~0.998)


图 4 TOF患儿术后重症监护室滞留风险临床预测模型校准曲线 Fig.4 Calibration curve of the clinical prediction model for prolonged ICU stay risk in children with TOF post-surgery   TOF:法洛四联症
3、讨论

法洛四联症完全矫治术历经近70年的发展,患儿围手术期管理得到极大改善,目前国内外报道的TOF患儿术后早期死亡率为2.36%~5.56%,晚期死亡率低于1%[10]。尽管手术死亡率较低,但在临床实践过程中TOF完全矫治术后ICU滞留的发生率仍相对较高[11-12]。这不仅会减缓患儿早期康复,增加术后早期并发症的发生风险,甚至会在患儿离开ICU后继续产生对其认知能力、精神健康和身体机能等方面造成不良影响[13]。因此明确TOF患儿术后ICU滞留的危险因素,能够很好地帮助手术医师指导临床决策。本研究表明,体重小、术前NLR值高、术后机械辅助通气时间长以及发生术后并发症是患儿术后ICU滞留风险较高的独立预测因素。

重症TOF患儿由于肺动脉先天发育不良,低氧血液通过右向左分流到达体循环,生长发育常常受限,体质量较同龄儿小,对手术创伤的耐受力低下,易导致术后ICU滞留。这与国外Paweena等[14]和Egbe等[3]研究结论一致。而值得关注的是,Egbe等[3]认为年龄也是ICU滞留的独立预测因素,这可能与本研究有关年龄的入组标准不同有关。

NLR可反映患儿的一般状况和生理压力,如感染、营养不良、慢性炎症、微循环损伤或慢性缺氧状态,被认为与心脏大血管术后不良预后有关[15-16]。武勰等[15]对707例TOF患儿的研究认为,术前淋巴细胞水平低的患儿更容易出现不良预后,但NLR仅在单因素分析时有统计学意义。Tan等[17]则认为NLR升高会因出现重症感染引起ICU滞留,与本研究观点一致。考虑原因可能为TOF患儿本身存在严重的心内畸形,机体长期处于慢性缺氧、慢性炎症的应激状态,慢性炎症作用致使中性粒细胞反应性增高,慢性缺氧则会影响淋巴细胞增殖分化,导致淋巴细胞凋亡增加,NLR变大。因此术前NLR高的患儿,术后易发生严重的炎症反应,致使ICU滞留时间延长,更易出现不良预后[15-17]。由于中性粒细胞和淋巴细胞计数在婴幼儿期存在较大波动,为尽可能减少年龄对NLR的影响,本研究在入组时已对患儿年龄有所限制。

体外循环时间可以反映患儿畸形和手术的复杂程度。体外循环时间长的患儿往往病情较重,心肌再灌注损伤的风险较高,更易出现全身炎症反应综合征与凝血功能障碍,破坏全身脏器功能的稳态[18-19]。机体需在监护室经历较长时间的恢复。辅助机械通气时间与ICU滞留时间呈现出显著的相关性,国内外学者对此做了大量研究,主要是由于人工气道的建立影响了上呼吸道的屏障功能,易导致气道外伤、水肿和肺部分泌物的积聚,术后常会诱发下呼吸道感染,导致延迟拔管、ICU滞留[20-21]。术后并发症与ICU滞留往往互为因果;术后低心排出量综合征、肺部感染等常见并发症会直接导致低氧血症、器官灌注不足、肺水肿等病情进展,而ICU相关并发症又会加重患儿术后已经存在的并发症,最终导致ICU滞留[22-23]。总之,术前准确评估病情,尽可能缩短手术及体外循环时间,围手术期积极加强气道管理和肺保护,对降低TOF患儿术后监护室滞留风险有重要价值。

随着医疗技术水平的提升,本中心对于婴幼儿TOF的外科治疗逐渐向微创化发展,在国内率先应用经右腋下直小切口入路治疗TOF,本研究中约75%的患儿经此入路手术,近期预后满意,相信未来会成为一项极具潜力的微创技术。但目前例数尚有限,仍缺少中远期随访结果和多中心临床研究。此外,本研究且未对建立的模型进行外部扩展性验证。再者,本研究为单中心非随机对照试验,后续尚需进行多中心随机对照试验,对当前建立的模型进行前瞻性试验,了解该模型的稳定性,从而得出更准确的结果。

综上所述,低体重、NLR高、术中体外循环时间长,术后辅助机械通气时间长和发生并发症是TOF患儿完全矫治术后ICU滞留风险的独立预测因素。此外,我们还在此基础上构建了预测婴幼儿TOF完全矫治术后ICU滞留风险的列线图,可为医护人员提供准确的评估依据,尽早识别高危人群,制定有效的治疗策略。

利益冲突  所有作者声明不存在利益冲突

作者贡献声明  闫崇阳负责设计试验、采集数据、分析数据、起草文案、统计分析;赵力运、宋书波、梁维杰负责分析数据、对文章的知识性内容作批评性审阅;袁心刚、李萌浩负责设计试验、分析数据、统计分析;范太兵负责对文章的知识性内容作批评性审阅、行政、技术和材料支持指导

参考文献
[1]
王辉山, 李守军. 先天性心脏病外科治疗中国专家共识(十): 法洛四联症[J]. 中国胸心血管外科临床杂志, 2020, 27(11): 1247-1254.
Wang HS, Li SJ. Chinese expert consensus on surgical treatment of congenital heart disease (10): tetralogy of Fallot[J]. Chin J Clin Thorac Cardiovasc Surg, 2020, 27(11): 1247-1254. DOI:10.7507/1007-4848.202007065
[2]
方敏华, 王辉山, 汪曾炜, 等. 一期和分期手术矫治小儿法洛四联症的效果[J]. 中华胸心血管外科杂志, 2017, 33(5): 267-270.
Fang MH, Wang HS, Wang ZW, et al. The analysis of results in the young children with tetralogy of Fallot: one-stage versus staged repair[J]. Chin J Thorac Cardiovasc Surg, 2017, 33(5): 267-270. DOI:10.3760/cma.j.issn.1001-4497.2017.05.003
[3]
Egbe AC, Nguyen K, Mittnacht AJ, et al. Predictors of intensive care unit morbidity and midterm follow-up after primary repair of tetralogy of fallot[J]. Korean J Thorac Cardiovasc Surg, 2014, 47(3): 211-219. DOI:10.5090/kjtcs.2014.47.3.211
[4]
van der Ven JPG, van den Bosch E, Bogers AJCC, et al. Current outcomes and treatment of tetralogy of Fallot[J]. F1000Res, 2019, 8(F1000 Faculty Rev): 1530. DOI:10.12688/f1000research.17174.1
[5]
Hammett O, Griksaitis MJ. Management of tetralogy of Fallot in the pediatric intensive care unit[J]. Front Pediatr, 2023, 11: 1104533. DOI:10.3389/fped.2023.1104533
[6]
Balachandran VP, Gonen M, Smith JJ, et al. Nomograms in oncology: more than meets the eye[J]. Lancet Oncol, 2015, 16(4): e173-e180. DOI:10.1016/S1470-2045(14)71116-7
[7]
Masiero S, Cerrel Bazo HA, Rattazzi M, et al. Developing an instrument for an early prediction model of long-term functional outcomes in people with acquired injuries of the central nervous system: protocol and methodological aspects[J]. Neurol Sci, 2021, 42(6): 2441-2446. DOI:10.1007/s10072-020-04821-8
[8]
Cho SH, Pak K, Jeong DC, et al. The AP2M1 gene expression is a promising biomarker for predicting survival of patients with hepatocellular carcinoma[J]. J Cell Biochem, 2019, 120(3): 4140-4146. DOI:10.1002/jcb.27699
[9]
Zhang QJ, Wang J, Liu MH, et al. Weighted correlation gene network analysis reveals a new stemness index-related survival model for prognostic prediction in hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 12(13): 13502-13517. DOI:10.18632/aging.103454
[10]
Romeo JLR, Etnel JRG, Takkenberg JJM, et al. Outcome after surgical repair of tetralogy of Fallot: a systematic review and meta-analysis[J]. J Thorac Cardiovasc Surg, 2020, 159(1): 220-2369998. DOI:10.1016/j.jtcvs.2019.08.127
[11]
van Dongen EI, Glansdorp AG, Mildner RJ, et al. The influence of perioperative factors on outcomes in children aged less than 18 months after repair of tetralogy of Fallot[J]. J Thorac Cardiovasc Surg, 2003, 126(3): 703-710. DOI:10.1016/s0022-5223(03)00035-7
[12]
Egbe AC, Uppu SC, Mittnacht AJC, et al. Primary tetralogy of Fallot repair: predictors of intensive care unit morbidity[J]. Asian Cardiovasc Thorac Ann, 2014, 22(7): 794-799. DOI:10.1177/0218492313513773
[13]
Detsky ME, Harhay MO, Bayard DF, et al. Discriminative accuracy of physician and nurse predictions for survival and functional outcomes 6 months after an ICU admission[J]. JAMA, 2017, 317(21): 2187-2195. DOI:10.1001/jama.2017.4078
[14]
Chungsomprasong P, Somkittithum P, Chanthong P, et al. Risk factors and long-term outcomes after tetralogy of Fallot repair at an Asian tertiary referral center[J]. Asian Cardiovasc Thorac Ann, 2022, 30(4): 433-440. DOI:10.1177/02184923211039795
[15]
武勰. 小儿法洛四联症根治术预后的影响因素及机制研究[D]. 北京: 北京协和医学院, 2022. DOI: 10.27648/d.cnki.gzxhu.2022.000390.
Wu X. A study on the factors and mechanisms influencing the prognosis of radical surgery for tetralogy of Fallot in children[D]. Beijing: Peking Union Medical College, 2022. DOI: 10.27648/d.cnki.gzxhu.2022.000390.
[16]
Honda T, Uehara T, Matsumoto G, et al. Neutrophil left shift and white blood cell count as markers of bacterial infection[J]. Clin Chim Acta, 2016, 457: 46-53. DOI:10.1016/j.cca.2016.03.017
[17]
Tan TP, Arekapudi A, Metha J, et al. Neutrophil-lymphocyte ratio as predictor of mortality and morbidity in cardiovascular surgery: a systematic review[J]. ANZ J Surg, 2015, 85(6): 414-419. DOI:10.1111/ans.13036
[18]
Bond BR, Dorman BH, Clair MJ, et al. Endothelin-1 during and after cardiopulmonary bypass: association to graft sensitivity and postoperative recovery[J]. J Thorac Cardiovasc Surg, 2001, 122(2): 358-364. DOI:10.1067/mtc.2001.114936
[19]
Murin P, Boettcher W, Ozaki S, et al. Asanguineous cardiopulmonary bypass in infants: impact on postoperative mortality and morbidity[J]. Thorac Cardiovasc Surg, 2020, 68(1): 59-67. DOI:10.1055/s-0038-1676789
[20]
He Y, Zhang HS, Zhang TZ, et al. Analysis of the risk factors for severe lung injury after radical surgery for tetralogy of fallot[J]. Front Surg, 2022, 9: 892562. DOI:10.3389/fsurg.2022.892562
[21]
Tirotta CF, Alcos S, Lagueruela RG, et al. Three-year experience with immediate extubation in pediatric patients after congenital cardiac surgery[J]. J Cardiothorac Surg, 2020, 15(1): 1. DOI:10.1186/s13019-020-1051-3
[22]
饶洋洋, 周红梅, 李艺. 婴幼儿法洛四联症一期根治术后重症监护室滞留的危险因素分析[J]. 中国心血管病研究, 2021, 19(7): 618-622.
Rao YY, Zhou HM, Li Y. ARisk factors for prolonged stay in intensive care unit in infants with tetralogy of Fallot undergoing corrective surgery[J]. Chin J Cardiovasc Res, 2021, 19(7): 618-622. DOI:10.3969/j.issn.1672-5301.2021.07.008
[23]
Mercer-Rosa L, Elci OU, DeCost G, et al. Predictors of length of hospital stay after complete repair for tetralogy of Fallot: a prospective cohort study[J]. J Am Heart Assoc, 2018, 7(11): e008719. DOI:10.1161/JAHA.118.008719