2. 甘肃中医药大学中医临床学院,兰州 730000
2. School of Clinical Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
先天性肛门直肠畸形(anorectal malformation, ARM) 是小儿常见的先天性消化道畸形,患病率为1/5 000~1/2 000[1-2]。该畸形是由于怀孕第7周胚胎发育过程中背侧泄殖腔发育异常引起。45% ~65%的ARM与多系统发育异常相关,常见的合并畸形涉及泌尿生殖道、中枢神经、骨骼(椎骨/四肢)、心血管和消化系统[3]。尽管产前超声筛查广泛检测了胎儿病理情况,但大多数肛门直肠畸形在出生时才被诊断,宫内诊断率仅16%左右[4]。因此,明确遗传因素或环境因素对ARM的影响,了解ARM的发病机制,避免导致ARM的潜在危险因素,通过各种产前检查手段发现ARM致病基因,尽早发现患儿肛门直肠发育缺陷,才能从根本上达到降低新生儿ARM发病率的目的。本文从遗传因素和非遗传因素角度对ARM发病原因进行综述,同时对ARM发病机制及其涉及的相关信号通路、基因进行归纳总结。
一、遗传因素约60%的ARM与遗传综合征或染色体异常相关,约10%的合并遗传综合征的ARM与染色体数目或结构异常相关[5]。Dworschak等[6]调查了327例ARM患者直系亲属的子代,发现该群体ARM发病率达62%,明显高于普通人群,也证实了ARM的常染色体显性遗传规律。
(一) 与ARM相关的综合征 (1) 21三体综合征ARM患者最常见的染色体异常为21三体综合征。据不完全统计,21三体综合征合并ARM占所有染色体异常伴ARM患者的40%左右,约95%的21三体综合征合并ARM患者存在肛门闭锁,其中35% ~40%为无瘘的肛门闭锁。
(2) 13q缺失综合征13q缺失综合征亦是ARM患者常合并的染色体异常,该综合征的典型表现是ARM合并生殖器畸形(包括阴茎阴囊转位、尿道下裂)。ARM基因表达的关键区域位于13q33.3-qter,而致病基因新发突变(de novo mutation,DNM)使子代基因组中出现不同于父母基因组的胚系变异,也可能是导致13q缺失综合征的原因之一[7]。
(3) Townes-Brocks综合征(Townes-Brocks syndrome, TBS)TBS是ARM患者合并的单基因综合征,遗传方式为常染色体显性遗传,约84%的TBS患者存在ARM[8]。SALL1基因突变是TBS最主要的发病原因,典型表现包括肛门闭锁、耳部发育不良以及拇指畸形;但当SALL1基因突变后保留更多的锌指结构域基序时,患者可只表现为部分轻微症状,而追溯患者家族史,可以大大提高对症状轻微TBS的诊断和鉴别。Webb等[9]发现了1例DACT1突变体,其表型特征与TBS重叠,但SALL1基因突变为阴性,笔者认为这可能是致病基因DNM作用的结果。
(4) Currarino综合征(Currarino syndrome, CS)CS是一种常染色体显性遗传综合征,以ARM、骶骨异常和骶前肿块为特征[10]。在约92%的家族性病例和约32%的散发病例中发现,CS是由MNX1杂合变异导致。Dworschaket等[11]报道CS具有不完全外显、临床表型高度可变的特点,所以当考虑CS时,可以彻底了解家族史,并考虑行脊柱、骨盆超声或骶骨X线检查,有利于临床诊断。
(5) FG综合征(FG syndrome, FGS)和Opitz G/BBB综合征FGS和Opitz G/BBB综合征是两种X连锁的隐性遗传综合征。FGS多由MED12基因半合子突变引起[12]。合并ARM的患者常表现为肛门闭锁、肛门狭窄或肛门前移位[13]。这种综合征的面部特征可能不易辨认,而MID1基因突变导致的Opitz G/BBB综合征具有典型的特殊面容(眼距增宽,伴有尿道下裂、喉气管缺损、唇腭裂、先天性心脏缺陷、智力障碍或发育迟缓)。约1/4的Opitz G/BBB综合征患者有ARM[14]。
(6) VACTERL综合征椎体畸形(vertebral deformity, V)、肛门直肠畸形(anorectal malformation, A)、先天性心脏病(cardiac defect, C)、气管食管瘘(tracheoesophageal fistula, TE)、肾脏畸形(renal dysplasia, R)和肢体畸形(limb anomalies, L)中至少有三个系统器官受累,则可诊断为VACTERL综合征[15]。VACTERL综合征的病因目前尚不清楚,绝大多数VACTERL综合征病例为散发性,但也有偶发的家族性病例[16]。在符合VACTERL综合征诊断标准的患者中,常伴随其他染色体异常,如21三体综合征、18三体综合征、13三体综合征和22q11.2缺失综合征[17]。有研究指出,VACTERL综合征的主要致病基因包括ZIC3、FOXF1、PCSK5和TRAP1 [18]。Hilger等[19]也证实了TRAP1和ZIC3是VACTERL综合征的致病基因。但Thiem等[20]对522例VACTERL综合征患者的基因进行测序,发现FOXF1、HSPA6、HAAO和KYNU不是VACTER/VACTERL综合征的致病基因。由此看出,VACTERL综合征的遗传系谱比目前已知的更加复杂。
(二) ARM相关信号通路胚胎期后肠发育多指由外胚层起源,来自肛窝的消化管部位,其在时间、空间上的发育过程受相关信号通路中多个基因的调控,而后肠发育在时空维度出现信号通路异常和(或)基因缺失,均会导致ARM发生。只有当相关基因的级联表达被很好地协调时,肛门直肠才能正常发育。
(1) 全反式维甲酸(all-transretinoic acid, ATRA)信号通路泄殖腔是后肠发育过程中肛门、直肠、泌尿系统起源的胚胎结构。研究表明,由维甲酸受体(retinoic acid receptor, RAR)介导的ATRA信号通路有助于肛门、直肠和泌尿生殖结构的形成。Mark等[21]敲除小鼠的Rara、Rarb等位基因来减弱ATRA信号传导,通过高分辨显微镜三维重建图像发现RAR缺失后,泄殖腔背侧未在相应时间内向尾沟移动,且腹侧的尿生殖窦(urogenital sinus, UGS)上皮和间质部分发育不良,导致肛门发育异常。RAR信号通路异常也与单脐动脉形成相关,而脐动脉的缺失也涉及胎儿髂总动脉和肠系膜下动脉的发育异常,这种血管异常同时被认为是造成泄殖腔发育异常的机制之一。这也为ATRA信号通路在后肠发育中发挥重要作用提供了参考依据[22]。
(2) 肽酶结构域蛋白1 (peptidase domain-containing protein 1, PPPDE1)去泛素化酶(deubiquitinating enzyme, DUB)在多种细胞活动中发挥重要作用,包括基因转录、细胞增殖、免疫反应及肿瘤发生发展过程等。而PPPDE1是一种新型的DUB,可以识别和去除连接在底物蛋白上的泛素标记。有研究指出PPPDE1可能是细胞凋亡的调节因子[23]。在正常胎鼠肛门直肠发育阶段(妊娠第13~16天),尿直肠隔(urorectal septum, URS)与泄殖腔膜(cloaca membrane, CM)的距离缩短,并相互融合,使膀胱与直肠分离,肛膜发生破裂,背侧泄殖腔膜移向尾沟,直肠末端才会与外界相通,最终形成肛门[24]。Li等[25]发现PPPDE1在后肠上皮细胞中过表达可以上调细胞凋亡调控因子Bax(BCL2 associated X protein, Bax)并激活细胞凋亡的线粒体途径,使线粒体细胞色素C(cyto-chrome C, Cyt C)的释放增加,促进细胞过度凋亡,使URS与CM融合失败,导致ARM。上述研究均表明PPPDE1表达上调可能与ARM发生有关。
(三) ARM中神经发育相关信号通路ARM术后并发症包括便秘、腹泻、大小便失禁等,严重影响患者术后生活质量[26]。腰骶段脊髓所控制的排便中枢通过对盆底肌和肛门直肠的神经支配,从而维持正常的排便生理[27]。既往研究显示腰骶部脊髓发育异常的ARM患者术后更容易出现排便功能障碍[28]。Yang等[29]发现ARM胎鼠腰骶段脊髓Shh、Ptch1和Gli1的表达在发育后期明显下调,可能导致盆底肌神经元发育不良及神经节细胞减少,使神经元与靶细胞出现异常信息传递,出现肛门功能异常。Yang等[30]证实在乙烯硫脲(ethylenethiourea, ETU)致ARM的胎鼠模型中,胚胎发育晚期(胚胎发育第16~21天)尾部脊髓的Notch1表达下调,使神经细胞的生成、分化和增殖受到影响,导致腰骶段脊髓发育不良和功能障碍,从而证实Notch1表达下调可导致ARM患者腰骶段脊髓发育不良及术后并发症。由肌间神经丛和黏膜下神经丛组成的肠神经系统(enteric nervous system, ENS)也与排便过程密切相关,Zheng等[31]研究证实, ETU致ARM胎鼠模型在胚胎发育第17天和第21天时,嘌呤受体亚型P2Y2受体(purinergic receptor P2Y2, P2Y2)和HuD蛋白(Hu antigen D protein, HuD)在肠肌间神经丛和黏膜下神经丛中表达水平均显著降低,提示P2Y2和HuD的表达对正常胎鼠的ENS发育起重要作用。
(四) ARM相关基因 (1) Wnt5a (Wnt family member 5A)Wnt5a是肛门直肠发育过程中起关键作用的基因之一[32]。敲除Wnt5a的ARM小鼠会出现肛门闭锁伴直肠尿道瘘。环状RNA(circular RNA, circRNA)是一类保守且稳定的单链RNA,是缺乏5′末端帽子和3′末端poly(A)尾巴、头尾以共价键形式结合的闭合环状结构[33]。Liu等[34]通过荧光素酶实验验证了在ARM大鼠中rno_circ_0005139通过“海绵效应”吸附miR-324-3p而正性调节Wnt5a的表达和功能,表明circRNA可能作为Wnt5a上游的调控因子,在ARM的发生、发展过程中起关键作用。Wnt5a还在盆底神经肌肉调控方面表达显著,尤其是在肠肌间神经丛中发挥重要作用[35]。Nakata等[32]发现在胚胎发育第8天敲除Wnt5a后,泄殖腔发育异常,使ARM发生,同时盆底横纹肌复合体(striated muscle complex, SMC)的尾端发育也出现异常,证实Wnt5a参与了ARM的发生和SMC的发育过程,也证实了ARM的发生伴随SMC发育不良。
(2) 微小RNA(microRNA, miRNA)非编码RNA(non-coding RNA, ncRNA)是一类调节基因表达但不编码蛋白质的RNA[36]。ncRNA可分为长链非编码RNA(长度>200个核苷酸)和短链非编码RNA(长度<200个核苷酸),后者包含miRNA。研究报道,miRNA通过调节ARM相关信号通路影响ARM的发生、发展。Jin等[37]使用基因微矩阵分析评估了ETU诱导致畸的ARM大鼠中miRNA和mRNA的后肠末端表达情况,发现后肠发育需要的关键基因Fgf、Wnt低表达与rno-miR-221-3p、rno-miR-381-3p、rno-miR-128-3p、rno-miR-495、rno-miR-221-3p在ARM胎鼠后肠末端组织中的异常表达有关。Wang等[38]采用ETU诱导大鼠ARM模型,通过生物信息学分析发现,在妊娠第15天和第16天ARM组miR-141-3p表达下调,而其靶基因Ub domain-containing protein 2(Ubtd2) 表达上调。miR-141-3p通过靶向Ubtd2增加肠上皮细胞(intestinal epithelial cell-6, IEC-6)凋亡,影响β-catenin信号通路,参与ARM的发生。
二、非遗传因素妊娠期的某些母体疾病可能增加后代发生ARM的风险,包括肥胖、妊娠早期发热、哮喘、癫痫、维生素A缺乏、叶酸缺乏以及甲状腺疾病等[39]。Wu等[40]对接受ARM治疗的136例患儿家长进行问卷调查,发现母体感染、孕期贫血可能是ARM的危险因素,补充叶酸和复合维生素可减少ARM的发生。
(一) 肥胖母体肥胖是ARM的重要危险因素,Svenningsson等[41]研究发现妊娠早期母体肥胖(身体质量指数≥30 kg/m2)与ARM风险增加相关。母体肥胖可导致卵母细胞减数分裂异常、氧化应激或线粒体功能障碍等,进而影响胎儿、胎盘发育,导致ARM[42]。另外,既往研究发现母体高血糖与后代先天性多器官畸形的发生息息相关,但在最新报告的ARM母体风险因素中,没有观察到高血糖孕产妇与后代ARM发病风险相关[43]。
(二) 慢性呼吸道疾病van de Putte等[44]研究表明,后代ARM与妊娠期母亲慢性呼吸道疾病未得到控制存在相关性,尤其是存在非过敏性诱因(如天气条件、病毒感染、室外和室内污染物)、使用急救药物以及在妊娠期发生急性加重的慢性呼吸道疾病的孕妇,其后代发生ARM的风险明显增加。母体缺氧影响胎儿发育可能是导致ARM的原因之一[45]。哮喘妇女体内γ-干扰素和热休克蛋白(heat shock protein-70, HSP 70)水平增加,也可能是胎儿发生ARM的原因之一[46]。
(三) 早产和小胎龄儿(small gestational age, SGA)早产儿在不同胎龄ARM患儿中占比很高(超过1/6),其中又有超过1/10的患者为SGA[47]。Wijers等[48]证实ARM早产儿因母体妊娠早期胎盘功能不全,导致ARM的发生。除ARM之外的其他器官发育畸形也可能与早产有关。
三、小结综上所述,ARM致病因素多样,但目前只有少数致病因素被明确,通过区域性、小样本病例和个别基因的研究,很难揭示其具体的发病机制,筛选出全面的治疗靶点。随着分子生物学新技术的不断涌现和各种组学信息资源的高度共享,采用全基因组测序技术、全胚胎体外培养、基因组学、代谢组学和实验动物学等最新技术,建立世界范围内大型临床资源库,从而完善ARM病因学研究和明确主效基因,有望实现ARM的基因诊断、基因治疗。
利益冲突 所有作者声明不存在利益冲突
[1] |
Rohrer L, Vial Y, Gengler C, et al. Prenatal imaging of anorectal malformations-10-year experience at a tertiary center in Switzerland[J]. Pediatr Radiol, 2020, 50(1): 57-67. DOI:10.1007/s00247-019-04513-2 |
[2] |
王睿, 李碧香, 赵斯君. 先天性肛门直肠畸形患儿的临床特征及手术后肛门功能相关因素分析[J]. 临床小儿外科杂志, 2022, 21(6): 535-539. Wang R, Li BX, Zhao SJ. Clinical features and short-term prognoses of congenital anorectal malformations[J]. J Clin Ped Sur, 2022, 21(6): 535-539. DOI:10.3760/cma.j.cn101785-202106060-007 |
[3] |
Marcelis C, Dworschak G, de Blaauw I, et al. Genetic counseling and diagnostics in anorectal malformation[J]. Eur J Pediatr Surg, 2021, 31(6): 482-491. DOI:10.1055/s-0041-1740338 |
[4] |
King SK, Levitt MA. Advances in the management of the neonate born with an anorectal malformation[J]. Clin Perinatol, 2022, 49(4): 965-979. DOI:10.1016/j.clp.2022.08.002 |
[5] |
Marcelis C, de Blaauw I, Brunner H. Chromosomal anomalies in the etiology of anorectal malformations: a review[J]. Am J Med Genet A, 2011, 155A(11): 2692-2704. DOI:10.1002/ajmg.a.34253 |
[6] |
Dworschak GC, Zwink N, Schmiedeke E, et al. Epidemiologic analysis of families with isolated anorectal malformations suggests high prevalence of autosomal dominant inheritance[J]. Orphanet J Rare Dis, 2017, 12(1): 180. DOI:10.1186/s13023-017-0729-7 |
[7] |
Dworschak GC, van Rooij IALM, Reutter HM. The role of de novo variants in formation of human anorectal malformations[J]. Genes (Basel), 2021, 12(9): 1298. DOI:10.3390/genes12091298 |
[8] |
严晓虹, 袁慧军, 赵宇. Townes-Brocks综合征基因型-表型相关性分析[J]. 中国听力语言康复科学杂志, 2021, 19(3): 168-174. Yan XH, Yuan HJ, Zhao Y. Genotype-phenotype correlation analysis of Townes-Brocks syndrome[J]. Chin Sci J Hear Speech Rehabil, 2021, 19(3): 168-174. DOI:10.3969/j.issn.1672-4933.2021.03.003 |
[9] |
Webb BD, Metikala S, Wheeler PG, et al. Heterozygous pathogenic variant in DACT1 causes an autosomal-dominant syndrome with features overlapping Townes-Brocks syndrome[J]. Hum Mutat, 2017, 38(4): 373-377. DOI:10.1002/humu.23171 |
[10] |
刘凌娅, 张震, 李颀, 等. 4个Currarino综合征家系的临床表型及遗传学分析[J]. 山西医科大学学报, 2022, 53(12): 1598-1605. Liu LY, Zhang Z, Li Q, et al. Clinical features and genetic analysis of four pedigrees with Currarino syndrome[J]. J Shanxi Med Univ, 2022, 53(12): 1598-1605. DOI:10.13753/j.issn.1007-6611.2022.12.017 |
[11] |
Dworschak GC, Reutter HM, Ludwig M. Currarino syndrome: a comprehensive genetic review of a rare congenital disorder[J]. Orphanet J Rare Dis, 2021, 16(1): 167. DOI:10.1186/s13023-021-01799-0 |
[12] |
Graham JM Jr, Schwartz CE. Med12 related disorders[J]. Am J Med Genet A, 2013, 161A(11): 2734-2740. DOI:10.1002/ajmg.a.36183 |
[13] |
Clark RD, Graham JM Jr, Friez MJ, et al. FG syndrome, an X-linked multiple congenital anomaly syndrome: the clinical phenotype and an algorithm for diagnostic testing[J]. Genet Med, 2009, 11(11): 769-775. DOI:10.1097/GIM.0b013e3181bd3d90 |
[14] |
Fontanella B, Russolillo G, Meroni G. MID1 mutations in patients with X-linked Opitz G/BBB syndrome[J]. Hum Mutat, 2008, 29(5): 584-594. DOI:10.1002/humu.20706 |
[15] |
Solomon BD, Bear KA, Kimonis V, et al. Clinical geneticists' views of VACTERL/VATER association[J]. Am J Med Genet A, 2012, 158A(12): 3087-3100. DOI:10.1002/ajmg.a.35638 |
[16] |
Hilger A, Schramm C, Draaken M, et al. Familial occurrence of the VATER/VACTERL association[J]. Pediatr Surg Int, 2012, 28(7): 725-729. DOI:10.1007/s00383-012-3073-y |
[17] |
Brosens E, Eussen H, van Bever Y, et al. VACTERL association etiology: the impact of de novo and rare copy number variations[J]. Mol Syndromol, 2013, 4(1/2): 20-26. DOI:10.1159/000345577 |
[18] |
Saisawat P, Kohl S, Hilger AC, et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association[J]. Kidney Int, 2014, 85(6): 1310-1317. DOI:10.1038/ki.2013.417 |
[19] |
Hilger AC, Halbritter J, Pennimpede T, et al. Targeted resequencing of 29 candidate genes and mouse expression studies implicate ZIC3 and FOXF1 in human VATER/VACTERL association[J]. Hum Mutat, 2015, 36(12): 1150-1154. DOI:10.1002/humu.22859 |
[20] |
Thiem CE, Stegmann JD, Hilger AC, et al. Re-sequencing of candidate genes FOXF1, HSPA6, HAAO, and KYNU in 522 individuals with VATER/VACTERL, VACTER/VACTERL-like association, and isolated anorectal malformation[J]. Birth Defects Res, 2022, 114(10): 478-486. DOI:10.1002/bdr2.2008 |
[21] |
Mark M, Teletin M, Wendling O, et al. Pathogenesis of anorectal malformations in retinoic acid receptor knockout mice studied by HREM[J]. Biomedicines, 2021, 9(7): 742. DOI:10.3390/biomedicines9070742 |
[22] |
Chatagnon A, Veber P, Morin V, et al. RAR/RXR binding dynamics distinguish pluripotency from differentiation associated cis-regulatory elements[J]. Nucleic Acids Res, 2015, 43(10): 4833-4854. DOI:10.1093/nar/gkv370 |
[23] |
Xie XW, Wang XY, Jiang D, et al. PPPDE1 is a novel deubiquitinase belonging to a cysteine isopeptidase family[J]. Biochem Biophys Res Commun, 2017, 488(2): 291-296. DOI:10.1016/j.bbrc.2017.04.161 |
[24] |
Tang XB, Zhang T, Wang WL, et al. Temporal and spatial expression of caudal-type homeobox gene-2 during hindgut development in rat embryos with ethylenethiourea-induced anorectal malformations[J]. Cell Tissue Res, 2014, 357(1): 83-90. DOI:10.1007/s00441-014-1858-0 |
[25] |
Li SY, Wang CY, Zhao JJ, et al. Upregulation of PPPDE1 contributes to anorectal malformations via the mitochondrial apoptosis pathway during hindgut development in rats[J]. Exp Cell Res, 2021, 402(2): 112574. DOI:10.1016/j.yexcr.2021.112574 |
[26] |
Zheng HQ, Liu GJ, Liang ZJ, et al. Middle-term bowel function and quality of life in low-type anorectal malformation[J]. Ital J Pediatr, 2019, 45(1): 98. DOI:10.1186/s13052-019-0701-3 |
[27] |
李龙, 周燕, 王常林, 等. 肛门直肠畸形患儿肛周肌肉改变的研究[J]. 临床小儿外科杂志, 2020, 19(10): 872-877. Li L, Zhou Y, Wang CL, et al. Anatomic observations on anorectal musculatures of normal and anorectal malformations in neonates[J]. J Clin Ped Sur, 2020, 19(10): 872-877. DOI:10.3969/j.issn.1671-6353.2020.10.003 |
[28] |
Wood RJ, Levitt MA. Anorectal malformations[J]. Clin Colon Rectal Surg, 2018, 31(2): 61-70. DOI:10.1055/s-0037-1609020 |
[29] |
Yang ZH, Gao LL, Jia HM, et al. The expression of Shh, Ptch1, and Gli1 in the developing caudal spinal cord of fetal rats with anorectal malformations[J]. J Surg Res, 2019, 233: 173-182. DOI:10.1016/j.jss.2018.08.006 |
[30] |
Yang ZH, Jia HM, Bai YZ, et al. Spatiotemporal expression of neurogenic locus notch homolog protein 1 in developing caudal spinal cord of fetuses with anorectal malformations from ETU-fed rats[J]. J Mol Histol, 2020, 51(5): 519-530. DOI:10.1007/s10735-020-09900-w |
[31] |
Zheng ZB, Chen B, Jin Z, et al. Downregulation of P2Y2 and HuD during the development of the enteric nervous system in fetal rats with anorectal malformations[J]. Mol Med Rep, 2019, 20(2): 1297-1305. DOI:10.3892/mmr.2019.10356 |
[32] |
Nakata M, Honda H, Iwama A, et al. Wnt5a plays a critical role in anal opening in mice at an early stage of embryonic development[J]. Pediatr Surg Int, 2022, 38(5): 743-747. DOI:10.1007/s00383-022-05103-4 |
[33] |
Li SY, Wang CY, Xiao YX, et al. RNA-seq profiling of circular RNAs during development of hindgut in rat embryos with ethylenethiourea-induced anorectal malformations[J]. Front Genet, 2021, 12: 605015. DOI:10.3389/fgene.2021.605015 |
[34] |
Liu D, Qu Y, Cao ZN, et al. Rno_circ_0005139 regulates apoptosis by targeting Wnt5a in rat anorectal malformations[J]. World J Gastroenterol, 2020, 26(29): 4272-4287. DOI:10.3748/wjg.v26.i29.4272 |
[35] |
Jia HM, Chen QJ, Zhang T, et al. Wnt5a expression in the hindgut of fetal rats with chemically induced anorectal malformations-studies in the ETU rat model[J]. Int J Colorectal Dis, 2011, 26(4): 493-499. DOI:10.1007/s00384-010-1125-0 |
[36] |
Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology[J]. Circ Res, 2015, 116(4): 751-762. DOI:10.1161/CIRCRESAHA.116.303549 |
[37] |
Jin SG, Wang JX, Chen H, et al. Differential miRNA expression analysis during late stage terminal hindgut development in fetal rats[J]. J Pediatr Surg, 2017, 52(9): 1516-1519. DOI:10.1016/j.jpedsurg.2017.02.015 |
[38] |
Wang CY, Li SY, Xiao YX, et al. MiR-141-3p affects β-catenin signaling and apoptosis by targeting Ubtd2 in rats with anorectal malformations[J]. Ann N Y Acad Sci, 2022, 1518(1): 315-327. DOI:10.1111/nyas.14924 |
[39] |
Wang C, Li L, Cheng W. Anorectal malformation: the etiological factors[J]. Pediatr Surg Int, 2015, 31(9): 795-804. DOI:10.1007/s00383-015-3685-0 |
[40] |
Wu F, Wang ZL, Bi Y, et al. Investigation of the risk factors of anorectal malformations[J]. Birth Defects Res, 2022, 114(3/4): 136-144. DOI:10.1002/bdr2.1974 |
[41] |
Svenningsson A, Gunnarsdottir A, Wester T. Maternal risk factors and perinatal characteristics of anorectal malformations[J]. J Pediatr Surg, 2018, 53(11): 2183-2188. DOI:10.1016/j.jpedsurg.2018.04.021 |
[42] |
Jarvie E, Hauguel-de-Mouzon S, Nelson SM, et al. Lipotoxicity in obese pregnancy and its potential role in adverse pregnancy outcome and obesity in the offspring[J]. Clin Sci (Lond), 2010, 119(3): 123-129. DOI:10.1042/CS20090640 |
[43] |
Parnell AS, Correa A, Reece EA. Pre-pregnancy obesity as a modifier of gestational diabetes and birth defects associations: a systematic review[J]. Matern Child Health J, 2017, 21(5): 1105-1120. DOI:10.1007/s10995-016-2209-4 |
[44] |
van de Putte R, de Blaauw I, Boenink R, et al. Uncontrolled maternal chronic respiratory diseases in pregnancy: a new potential risk factor suggested to be associated with anorectal malformations in offspring[J]. Birth Defects Res, 2019, 111(2): 62-69. DOI:10.1002/bdr2.1429 |
[45] |
Blais L, Kettani FZ, Elftouh N, et al. Effect of maternal asthma on the risk of specific congenital malformations: a population-based cohort study[J]. Birth Defects Res A Clin Mol Teratol, 2010, 88(4): 216-222. DOI:10.1002/bdra.20651 |
[46] |
Tamási L, Bohács A, Tamási V, et al. Increased circulating heat shock protein 70 levels in pregnant asthmatics[J]. Cell Stress Chaperones, 2010, 15(3): 295-300. DOI:10.1007/s12192-009-0143-8 |
[47] |
Zwink N, Rissmann A, Pötzsch S, et al. Parental risk factors of anorectal malformations: analysis with a regional population-based control group[J]. Birth Defects Res A Clin Mol Teratol, 2016, 106(2): 133-141. DOI:10.1002/bdra.23469 |
[48] |
Wijers CHW, van Rooij IALM, Bakker MK, et al. Anorectal malformations and pregnancy-related disorders: a registry-based case-control study in 17 European regions[J]. BJOG, 2013, 120(9): 1066-1074. DOI:10.1111/1471-0528.12235 |