2. 兰州大学第二临床医学院, 兰州 730030;
3. 兰州大学第二医院小儿外科, 兰州 730030
2. Second Clinical School of Medicine, Lanzhou University, Lanzhou 730030, China;
3. Department of Pediatric Surgery, Second Hospital, Lanzhou University, Lanzhou 730030, China
近年来,随着小儿微创外科技术的发展,腹腔镜手术以其损伤小、并发症少、恢复快等优势被广泛应用于临床[1]。与成人相比,新生儿和婴幼儿具有功能残气量低、闭合容量和耗氧量高的特点,在全身麻醉后容易发生肺不张和低氧血症[2-3]。同时,腹腔镜手术中气腹的建立,可使膈肌抬高,增加肺不张的发生率。研究表明,小儿围术期肺不张的发生率高达68% ~100%[4]。围术期肺不张是导致术后低氧血症和术后肺部并发症(postoperative pulmonary complications, PPCs)的主要原因[5-6]。临床研究证实,以驱动压(driving pressure, DP)为导向的个体化呼气末正压(positive end-expiratory pressure, PEEP)策略可以改善成人患者术中肺功能,降低术后肺不张的发生率[7]。本研究拟探讨以获取最低驱动压为导向的个体化PEEP策略对小儿腹腔镜手术的肺保护作用,并通过超声技术评价术后肺不张的发生率,为小儿腹腔镜手术围手术期选择适宜的肺保护性通气策略提供依据。
材料与方法 一、临床资料以2021年6月至2021年10月兰州大学第二医院择期行腹腔镜手术的46例患儿为研究对象,患儿年龄1~6岁,美国麻醉医师协会(American Society of Anesthesiologists, ASA)分级Ⅰ~Ⅱ级。排除标准:①合并先天性心脏病;②合并呼吸系统疾病(肺炎、支气管哮喘等);③患儿家属拒绝参与本临床试验;④既往有肺部手术史;⑤体质量指数(body mass index, BMI)≥19.8 kg/m2;⑥肺超声评分大于2分;⑦中转开腹手术;⑧手术时间<2 h[8]。
采用随机数字表法将46例患儿分为驱动压导向个体化PEEP组和固定PEEP组,每组各23例。本研究通过兰州大学第二医院医学伦理委员会批准(批准文号:2021A - 425),由患儿家属签署知情同意书。
二、研究方法 (一) 麻醉方案所有患儿常规禁食、禁饮。入手术室后监测心电图、无创血压、心率、血氧饱和度和体温。予盐酸戊乙奎醚0.01 mg/kg、咪达唑仑0.05 mg/kg、丙泊酚2.0 mg/kg、芬太尼3 μg/kg和顺式阿曲库铵0.2 mg/kg进行麻醉诱导,面罩辅助通气。待患儿意识消失、达到气管插管条件后,置入合适型号的气管导管。术中将肺泡最低有效浓度控制在0.8~1.3 MAC,以联合瑞芬太尼(0.2~0.3 μg.kg-1·min-1) 维持麻醉,根据麻醉深度调整麻醉药物用量。选择容量控制通气(volume-controlled ventilation, VCV)模式控制呼吸,设置潮气量(tidal volume, VT) 为8 mL/kg,调整呼吸频率维持PET CO2在35~45 cmH2O(1 cmH2O=0.098 kPa)之间,I/E=1 ∶ 2,设置起始PEEP为2 cmH2O,FiO2为45%。
两组患儿在气腹后5 min实施肺复张策略(采用肺活量法,设置压力为30 cmH2O,维持10 s)。按照病例分组设定PEEP值。固定PEEP组:设置5 cmH2O的PEEP直至手术结束。驱动压导向个体化PEEP组:PEEP从2 cmH2O开始,每次递增1 cmH2O,每一PEEP水平维持10次呼吸循环,记录最后一次呼吸循环下的PEEP值,直至获得最低驱动压,在PEEP设定过程中,其最大值不超过10 cmH2O[9]。手术结束后,停用所有麻醉药物,待患儿自主呼吸恢复、意识清醒后拔除气管导管,继续监护至Aldrete评分≥9分时送回病房。
(二) 肺部超声评分方法(lung ultrasound score, LUS)患儿取仰卧位,由同一位高年资主治医师操作Sonosite便携式超声仪,按照“十二区分法”依次进行肺超声评分。将肺部按照胸骨旁线、腋前线、腋后线以及双侧乳头连线分为12区,选择4~10 MHz线阵探头行肺超声检查,按照A线(指平行于胸膜线的多个等距线状强回声,是声波在胸膜处发生的混响效应)、B线(指垂直于胸膜线并指向肺实质的带状高回声,可与胸膜同步滑动,是肺部疾病的重要超声表现)的数量以及肺实变情况分为4个等级,评分细则如下:A线与孤立B线之和<3条,计0分;孤立B线≥3条,计1分;融合B线,计2分;白肺,计3分。胸膜下实变情况评分:胸膜下正常、无实变,计0分;胸膜下微小面积实变,计1分;胸膜下小面积实变,计2分;胸膜下大面积实变,计3分。评分>2分定义为肺不张,评分越高,表明患儿通气功能越差[4, 10]。
(三) 观察指标观察并记录气管插管后5 min(T1)、气腹后5 min(T2)、开始PEEP后4 min(T3)以及手术结束(T4)时的平台压(plateau Pressure, Pplat)、PEEP、驱动压(driving pressune, DP)、肺动态顺应性(dynamic respiratory system compliance, Cdyn)以及平均动脉压(mean arterial pressure, MAP)和心率(heart rate, HR);记录T1、T4、T5(出恢复室)时的LUS以及手术过程中气腹时间、气腹压力、机械通气时长、手术时长和手术类型[11]。
(四) 统计学处理采用SPSS 26.0进行数据分析。正态分布的计量资料以x±s表示,组间比较采用t检验、单因素方差分析;非正态分布的计量资料以M(Q1,Q3)表示,组间比较采用非参数检验。计数资料采用χ2检验或Fisher精确概率法。P<0.05为差异有统计学意义。
结果 一、两组腹腔镜手术患儿一般资料比较两组腹腔镜手术患儿性别、年龄、身体质量指数(body mass index, BMI)、手术时长、气腹时长、气腹压力、机械通气时长和手术类型比较,差异均无统计学意义(P>0.05),详见表 1。
表 1 两组腹腔镜手术患儿一般资料比较 Table 1 Comparison of general profiles of two groups of children undergoing laparoscopy |
![]() |
与T1时相比,驱动压导向个体化PEEP组和固定PEEP组患儿在T2时肺动态顺应性均降低,驱动压均升高,差异有统计学意义(P<0.05);与T2相比,两组患儿在T3、T4时的肺动态顺应性均增加,驱动压均降低,差异具有统计学意义(P<0.001);驱动压导向个体化PEEP组与固定PEEP组相比,患儿T3、T4时的肺动态顺应性增加,驱动压明显降低(P<0.05),差异有统计学意义,详见表 2。
表 2 两组腹腔镜手术患儿不同时间点呼吸参数对比 Table 2 Comparison of respiratory parameters between two groups undergoing laparoscopy at different timepoints |
![]() |
T3、T4时,驱动压导向个体化PEEP组患儿PEEP值的中位值为6 cmH2O,高于固定PEEP组的5 cmH2O,差异具有统计学意义(P<0.001),见表 2。
三、两组腹腔镜手术患儿不同时间点肺超声评分比较两组腹腔镜手术患儿在T1时LUS差异无统计学意义(P>0.05)。与T1相比,T4、T5时两组LUS均明显降低(P<0.05);与固定PEEP组相比,驱动压导向个体化PEEP组T4、T5时LUS降低,差异具有统计学意义(P<0.05),见表 3。
表 3 两组腹腔镜手术患儿不同时间点LUS评分比较(x±s,分) Table 3 Comparison of lung ultrasound scores (LUS) between two groups undergoing laparoscopy at different timepoints(x±s, point) |
![]() |
PPCs是导致患儿住院时间延长、医疗费用增加和病死率升高的主要原因[12]。PPCs的发生率为6% ~80%,且PPCs发生与其严重程度、存在的危险因素以及手术方式密切相关,其中肺不张是PPCs的重要相关因素[13]。实施肺保护性通气策略(lung protective ventilation strategy, LPVS)可以减少肺不张等呼吸机相关肺损伤,减少小儿围术期PPCs[14-16]。LPVS包括小潮气量(6~8 mL/kg)、适当的PEEP和肺复张策略。研究表明,术中行LPVS有助于获得更高的肺通气评分和更好的肺顺应性[17]。本研究结果显示,在CO2气腹建立后,驱动压导向个体化PEEP组和固定PEEP组患儿的肺动态顺应性均明显降低,这与腹内压增加、膈肌上移、限制胸廓及肺的扩张有关。实施肺复张和PEEP策略后,重新开放了塌陷的小气道和肺泡组织,并促使机械应力在肺内分布更加均匀,因而患儿的肺动态顺应性得到了显著改善,起到了肺保护的作用,这与Acosta等[3]针对1~7岁小儿腹腔镜手术实施开放肺通气策略的研究结果一致。
关于LPVS中PEEP值的设定目前仍存在较大争议。研究表明,实施肺复张后,与0~2 cmH2O的PEEP相比,5~7 cmH2O的PEEP更能预防肺不张发生,但最佳PEEP值尚不明确[18-19]。术中所需PEEP水平取决于患儿的身体素质、BMI和体位,因此差异较大[20]。PEEP过大会导致肺泡过度膨胀,引起容积伤和气压伤,导致血流动力学不稳定。PEEP过小则无法维持肺泡开放,起不到肺保护效果[21]。由于小儿呼吸系统解剖生理会随着年龄的增长而发生变化,因此应设置不同年龄段的最佳个体化PEEP值[22]。个体化PEEP的应用不仅能降低驱动压,改善肺的顺应性和氧合功能,还能降低术后肺不张的发生率[23]。常用的个体化PEEP滴定方式包括:P-V曲线法、最佳氧合/肺顺应性法、驱动压法以及经胸超声法等。驱动压是呼吸系统扩张的直接动力,近期一项随机对照试验表明,较高的DP与PPCs的发生密切相关,且该研究认为高DP是发生术后呼吸系统并发症的独立相关因素之一[24-26]。本研究中,两组患儿应用气腹后驱动压均增加;给予PEEP后,两组患儿T3、T4时的驱动压均降低。通过保持潮气量不变、调节PEEP而获得最低驱动压,得到最佳PEEP中位值为6 cmH2O。
本研究发现,驱动压导向组在降低驱动压方面明显优于固定PEEP组,体现了驱动压导向个体化PEEP通气策略的优势。本研究中将PEEP最大值限定在10 cmH2O,以减少对患儿循环功能的影响,并将HR和MAP作为反映患儿血流动力学情况的指标,结果显示两组不同时间点通气设置对患儿循环功能的影响差异均无统计学意义(P>0.05),说明以最低驱动压为导向的PEEP设置在小儿围术期的应用是安全的。
既往研究表明,将MRI或CT作为诊断肺不张的金标准时,肺超声诊断肺不张的敏感性、特异性和准确性分别为88%、89%、88%或87.7%,92.1%、90.8%[27-28]。本研究中,两组患儿实施PEEP策略后,LUS均降低。然而,以驱动压为导向的个体化PEEP的通气策略较常规设定PEEP的通气策略能更有效改善患儿术后肺不张,这与Park等[29]结果一致,6 cmH2O的PEEP更能有效减少麻醉引起的肺不张。
本研究的局限在于:①仅纳入了1~6岁患儿,驱动压导向PEEP设定能否在婴儿及大于6岁患儿中安全应用,还需要进一步研究;②在手术类型方面,只纳入了腹腔镜手术患儿,未纳入其他手术类型。
综上所述,对于1~6岁、ASAⅠ~Ⅱ级的腹腔镜手术患儿,实施驱动压导向的个体化呼气末正压通气策略可以明显改善患儿通气过程中的肺动态顺应性,降低驱动压和术后肺超声评分。
利益冲突 所有作者均声明不存在利益冲突
作者贡献声明 文献检索为郝伟、张琰、刘洋、钟海连,论文调查设计为郝伟、录亚鹏、陈亚惊、张琰,王迎斌,数据收集与分析为郝伟、张琰、张荣智、刘洋、陈亚惊,论文结果撰写为郝伟、王迎斌,论文讨论分析为郝伟、张荣智、王迎斌
[1] |
陈小林, 刘志新, 陈乜明, 等. 腹腔镜下自制缝针腹膜内补片治疗儿童复发性腹股沟疝的诊治分析[J]. 临床小儿外科杂志, 2017, 16(3): 273-276. Chen XL, Liu ZX, Chen MM, et al. Clinical experiences of treating recurrent pediatric inguinal hernia laparoscopically with home-made stitches[J]. J Clin Ped Sur, 2017, 16(3): 273-276. DOI:10.3969/j.issn.1671-6353.2017.03.018 |
[2] |
许光, 周崇高, 王海阳, 等. 腹腔镜与开腹手术治疗3月龄以内婴儿先天性食管裂孔疝的对比研究[J]. 临床小儿外科杂志, 2019, 18(1): 39-44. Xu G, Zhou CG, Wang HY, et al. A comparative study of laparoscopy versus open surgery for congenital hiatal hernia in infants aged under 3 months[J]. J Clin Ped Sur, 2019, 18(1): 39-44. DOI:10.3969/j.issn.1671-6353.2019.01.009 |
[3] |
Acosta CM, Sara T, Carpinella M, et al. Lung recruitment prevents collapse during laparoscopy in children: A randomised controlled trial[J]. Eur J Anaesthesiol, 2018, 35(8): 573-580. DOI:10.1097/EJA.0000000000000761 |
[4] |
Song IK, Kim EH, Lee JH, et al. Effects of an alveolar recruitment manoeuvre guided by lung ultrasound on anaesthesia-induced atelectasis in infants: a randomised, controlled trial[J]. Anaesthesia, 2017, 72(2): 214-222. DOI:10.1111/anae.13713 |
[5] |
Mini G, Ray BR, Anand RK, et al. Effect of driving pressure-guided positive end-expiratory pressure (PEEP) titration on postoperative lung atelectasis in adult patients undergoing elective major abdominal surgery: A randomized controlled trial[J]. Surgery, 2021, 170(1): 277-283. DOI:10.1016/j.surg.2021.01.047 |
[6] |
Lellouche F, Dionne S, Simard S, et al. High tidal volumes in mechanically ventilated patients increase organ dysfunction after cardiac surgery[J]. Anesthesiology, 2012, 116(5): 1072-1082. DOI:10.1097/ALN.0b013e3182522df5 |
[7] |
曹鹏, 宋正杰, 程静林. 驱动压导向的个体化呼气末正压通气对腹腔镜手术患者的肺保护作用[J]. 实用临床医药杂志, 2021, 25(10): 40-44. Cao P, Song ZJ, Cheng JL. Effect of individualized positive end expiratory pressureguided by driving pressure on lung protection in patients undergoing laparoscopic surgery[J]. Journal of Clinical Medicine in Practice, 2021, 25(10): 40-44. DOI:10.7619/jcmp.20210459 |
[8] |
李辉, 季成叶, 宗心南, 等. 中国0~18岁儿童、青少年体块指数的生长曲线[J]. 中华儿科杂志, 2009, 47(7): 493-498. Li H, Ji CY, Zong XN, et al. Body mass index growth carves for Chinese children and adolescents aged 0 to 18 years[J]. Chinese Journal of Pediatrics, 2009, 47(7): 493-498. DOI:10.3760/cma.j.issn.0578-1310.2009.07.004 |
[9] |
Park M, Ahn HJ, Kim JA, et al. Driving pressure during thoracic surgery: a randomized clinical trial[J]. Anesthesiology, 2019, 130(3): 385-393. DOI:10.1097/ALN.0000000000002600 |
[10] |
Lee JH, Choi S, Ji SH, et al. Effect of an ultrasound-guided lung recruitment manoeuvre on postoperative atelectasis in children: A randomised controlled trial[J]. Eur J Anaesthesiol, 2020, 37(8): 719-727. DOI:10.1097/EJA.0000000000001175 |
[11] |
Ruszkai Z, Kiss E, László I, et al. Effects of intraoperative PEEP optimization on postoperative pulmonary complications and the inflammatory response: study protocol for a randomized controlled trial[J]. Trials, 2017, 18(1): 375. DOI:10.1186/s13063-017-2116-z |
[12] |
Kilpatrick B, Slinger P. Lung protective strategies in anaesthesia[J]. Br J Anaesth, 2010, 105(Suppl 1): i108-116. DOI:10.1093/bja/aeq299 |
[13] |
Fernandez-Bustamante A, Frendl G, Sprung J, et al. Postoperative pulmonary complications, early mortality, and hospital stay following noncardiothoracic surgery: a multicenter study by the perioperative research network investigators[J]. JAMA Surg, 2017, 152(2): 157-166. DOI:10.1001/jamasurg.2016.4065 |
[14] |
Tusman G, Böhm SH, Warner DO, et al. Atelectasis and perioperative pulmonary complications in high-risk patients[J]. Curr Opin Anaesthesiol, 2012, 25(1): 1-10. DOI:10.1097/ACO.0b013e32834dd1eb |
[15] |
Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome[J]. N Engl J Med, 2000, 342(18): 1301-1308. DOI:10.1056/NEJM200005043421801 |
[16] |
Lee JH, Bae JI, Jang YE, et al. Lung protective ventilation during pulmonary resection in children: a prospective, single-centre, randomised controlled trial[J]. Br J Anaesth, 2019, 122(5): 692-701. DOI:10.1016/j.bja.2019.02.013 |
[17] |
Zhu C, Zhang S, Dong J, et al. Effects of positive end-expiratory pressure/recruitment manoeuvres compared with zero end-expiratory pressure on atelectasis in children: A randomised clinical trial[J]. Eur J Anaesthesiol, 2021, 38(10): 1026-1033. DOI:10.1097/EJA.0000000000001451 |
[18] |
Wirth S, Artner L, Broβ T, et al. Intratidal recruitment/derecruitment persists at low and moderate positive end-expiratory pressure in paediatric patients[J]. Respir Physiol Neurobiol, 2016, 234: 9-13. DOI:10.1016/j.resp.2016.08.008 |
[19] |
Jang YE, Ji SH, Kim EH, et al. Effect of regular alveolar recruitment on intraoperative atelectasis in paediatric patients ventilated in the prone position: a randomised controlled trial[J]. Br J Anaesth, 2020, 124(5): 648-655. DOI:10.1016/j.bja.2020.01.022 |
[20] |
Pelosi P, Croci M, Ravagnan I, et al. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia[J]. Anesth Analg, 1998, 87(3): 654-660. DOI:10.1097/00000539-199809000-00031 |
[21] |
Godeau D, Petit A, Richard I, et al. Return-to-work, disabilities and occupational health in the age of COVID-19[J]. Scand J Work Environ Health, 2021, 47(5): 408-409. DOI:10.5271/sjweh.3960 |
[22] |
Lee JH, Ji SH, Lee HC, et al. Evaluation of the intratidal compliance profile at different PEEP levels in children with healthy lungs: a prospective, crossover study[J]. Br J Anaesth, 2020, 125(5): 818-825. DOI:10.1016/j.bja.2020.06.046 |
[23] |
Pereira SM, Tucci MR, Morais C, et al. Individual positive end-expiratory pressure settings optimize intraoperative mechanical ventilation and reduce postoperative atelectasis[J]. Anesthesiology, 2018, 129(6): 1070-1081. DOI:10.1097/ALN.0000000000002435 |
[24] |
Neto AS, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data[J]. Lancet Respir Med, 2016, 4(4): 272-280. DOI:10.1016/S2213-2600(16)00057-6 |
[25] |
孟玉洁, 聂丽霞, 曹志萍, 等. 驱动压导向个体化呼气末正压对机器人辅助前列腺癌根治术老年患者术中肺功能的影响[J]. 中华老年医学杂志, 2020, 39(8): 931-935. Meng YJ, Nie LX, Cao ZP, et al. Effects of driving pressure-guided individualized positive end-expiratory pressure on intraoperative pulmonary function in elderly patients undergoing robot-assisted laparoscopic radical prostatectomy[J]. Chinese Journal of Geriatrics, 2020, 39(8): 931-935. DOI:10.3760/cma.j.issn.0254-9026.2020.08.018 |
[26] |
Rauf A, Sachdev A, Venkataraman ST, et al. Dynamic airway driving pressure and outcomes in children with acute hypoxemic respiratory failure[J]. Respir Care, 2021, 66(3): 403-409. DOI:10.4187/respcare.08024 |
[27] |
Acosta CM, Maidana GA, Jacovitti D, et al. Accuracy of transthoracic lung ultrasound for diagnosing anesthesia-induced atelectasis in children[J]. Anesthesiology, 2014, 120(6): 1370-1379. DOI:10.1097/ALN.0000000000000231 |
[28] |
Yu X, Zhai Z, Zhao Y, et al. Performance of lung ultrasound in detecting peri-operative atelectasis after general anesthesia[J]. Ultrasound Med Biol, 2016, 42(12): 2775-2784. DOI:10.1016/j.ultrasmedbio.2016.06.010 |
[29] |
Park S, Lee JH, Kim HJ, et al. Optimal positive end-expiratory pressure to prevent anaesthesia-induced atelectasis in infants: A prospective, randomised, double-blind trial[J]. Eur J Anaesthesiol, 2021, 38(10): 1019-1025. DOI:10.1097/EJA.0000000000001483 |