2. 天津市儿童医院外科(天津市, 300134)
2. Department of Pediatric Surgery, Tianjin Children's Hospital, Tianjin 300134, China
胆道闭锁(biliary atresia, BA)以肝内外胆管进行性炎症及肝纤维化为特征,黄疸进行性加重为主要临床表现。病因尚不明确,与病毒感染、免疫反应关系密切[1, 2]。BA诊断后应先行Kasai手术,部分患者恢复胆流后,肝纤维化并没有停止,自体肝生存率较低,最终需要通过肝移植来挽救生命[3]。延缓甚至逆转肝纤维化是治疗BA的重要环节。有研究证实,BA肝纤维化与胆管上皮细胞发生上皮- 间质转化(epithelial-mesenchymal transition, EMT)有关[4]。EMT是指分化成熟的极化上皮细胞在外界因素的刺激下,获得某些间质细胞的特征,使其具有更强的活性和迁移性,可促使实质器官纤维化[5, 6]。TGFβ1是多功能超家族一员,可影响细胞分化及细胞生长。TGFβ1在肝脏中表达较多,可引起肝脏中肝细胞、肝星状细胞、胆管上皮细胞发生EMT,促进肝纤维化[7-9]。研究表明,TGFβ1可通过诱导EMT促进BA肝纤维化进展[10-12]。肝纤维化的程度、肝内胆管闭锁程度是治疗胆道闭锁重要条件。Kasai术后,持续进展性肝纤维化是影响自体肝生存率的重要因素,延缓肝纤维化的进程在BA治疗中起到非常关键的作用[3]。
一、转化生长因子-β1(transforming growth factor-β1, TGFβ1)TGFβ是超因子家族中的一员,对细胞分化、细胞增生、胚胎发生、细胞凋亡等许多细胞反应有重要作用[7]。TGFβ是一种分泌型同型二聚体蛋白,内含两个亚基,每个亚基含有112个氨基酸。保守的Cys残基形成的分子间二硫键将两个亚基连接成二聚体蛋白[7, 13]。TGFβ共有六种亚型:TGFβ1~TGFβ6。TGFβ1在肝脏中活性最高,可被缺氧、细胞外脂蛋白等刺激激活,对肝纤维化、肿瘤进展有重要作用[14]。在BA肝内胆管纤维化中,可检测到TGFβ1的异常升高[7]。实验证明,在BA肝纤维化中,胆管上皮细胞TGFβ1与EMT标记因子增多[11]。由此可知,TGFβ1可诱导胆管上皮细胞上皮- 间质转化,促进BA肝纤维化。TGFβ1的相关受体(transforming growth factor-β1 receptor, TβR)、TβRⅠ/TβRⅡ复合物与TGFβ1结合,刺激Smad 2/Smad 3复合物形成,促进EMT进程[7, 9]。
二、上皮-间质转化(epithelial-mesenchymal tra-nsition, EMT)EMT是指在外界因素的刺激下,成熟的极化上皮细胞间连接逐渐松解向纺锤体形状的间质细胞转化,转化后细胞具有间质细胞特征,有更强的活性和迁移性,可参与器官纤维化、组织愈合、癌症迁移等过程[5, 6, 10, 15]。随着间质细胞转化增多,上皮细胞标志因子如E-钙黏蛋白、α-连环素等会逐渐下调,α-SMA、成纤维细胞特异性蛋白-1、波形蛋白等间质细胞标志因子上调。其中E-钙黏蛋白是上皮细胞间紧密结合的重要角色,E-钙黏蛋白的减少促进上皮组织松解,有利于向间质细胞转化[6, 16]。Zeisberg、Deng等[16, 17]实验表明,肝星状细胞、肝细胞可发生EMT。EMT可引起肝纤维化,在BA中也有相关报道[4, 7, 18]。在Deng等[19]的实验中通过免疫组化、双标记免疫荧光实验,发现间质细胞相关因子S100A4及上皮细胞相关因子CK-7在BA纤维化胆管上皮细胞中共表达,且S100A4表达的升高与CK-7降低有关;S100A4与胶原标记物HSP47在BA中也存在共表达细胞。Xiao等[20]发现TGFβ1诱导BA肝纤维化后,CK-7与α-SMA共表达于胆管上皮细胞,随着肝纤维化加重,共表达细胞逐渐减少,表达α-SMA细胞逐渐增多,提示间质细胞比例升高。胆道结扎小鼠模型中同样发现EMT过程,伴随梗阻逐渐加重,间质细胞标记因子α-SMA在14~21d呈现一个峰值[21]。EMT过程通过促进间质细胞增多使细胞外基质(extracellular matrix, ECM)不断沉积,逐渐导致肝纤维化[5, 7, 22]。若能够有效抑制或者逆转EMT进程,将很好地缓解甚至逆转BA肝纤维化,为提高患者自体肝生存率带来希望。
三、TGFβ1诱导EMT相关通路与肝纤维化关系 (一) TGFβ1/Smad通路TGFβ1/Smad通路可诱导EMT产生。转化生长因子-β1受体Ⅰ(transforming growth factor -β1 receptorⅠ, TβRⅠ)、转化生长因子-β1受体Ⅱ(transforming growth factor -β1 receptor Ⅱ, TβRⅡ)在人类基因组中由5~7个基因编码,由相似的跨膜丝氨酸/苏氨酸激酶构成。TβRⅠ前二聚体与TβRⅡ二聚体形成的异四聚体具有活化功能。在各种因素刺激下,TGFβ1与TβRⅠ/TβRⅡ复合物相连接,在富含甘氨酸、丝氨酸残基的近膜域中,TβRⅡ激酶将胞浆内Ⅰ型受体中的丝氨酸和苏氨酸残基磷酸化。磷酸化后的残基区域募集Smad 2/Smad 3复合物。TβRⅠ将募集的Smad 2/Smad 3复合物磷酸化,形成磷酸化-Smad 2/3 (p-Smad 2/3)[10, 13, 22]。p-Smad 2/3逐渐向Smad 4蛋白处移动形成Smad 2/3/4复合物且不断堆积。Smad 4蛋白MH1结构域(N-末端结构域,MH1)上的氮端核定位信号进入细胞核,Smad 2/3/4复合物与特定的DNA具有高度的转录调控功能,促进间质细胞转录因子增多,例如Snail、Twist等相关转化因子,从而促进间质细胞生成[7, 8, 10, 13]。间质细胞增多促进纤维组织表达,使ECM不断沉积,促进肝纤维化。丁美云等[24]研究发现,在BA肝纤维化早期,TGFβ1、Smad2mRNA表达较胆管扩张组明显增高,提示TGFβ1/Smad信号通路参与BA肝纤维化过程。
EMT转录过程可被微小RNA(microRNA, miRNA)影响[25]。在肝脏肿瘤中,miR-542-3-p可以影响TGF-β1/Smad信号通路[26]。BA肝纤维化中同样存在miRNA促进或抑制EMT的情况[22];miR-29c可以有效抑制小鼠胆管细胞中TGFβ1诱导EMT[12];miR-200b可以通过抑制E-钙黏蛋白阻遏物锌指蛋白1促进E-钙黏蛋白的生成,进而阻抑EMT,减缓肝纤维化[20]。
(二) TGFβ1/ERK通路细胞外信号调节激酶2(extracellular regulated protein kinase 2, ERK2)属丝裂原活化蛋白激酶(MAPK)家族,还包括p38和c-Jun氨基末端激酶2(c-Jun N-terminal kinase 2, JNK2)等,是参与生长、分化和凋亡等多种细胞过程的信号通路。
相关实验发现,ERK2与JNK2在BA组织汇管区及胆管上皮细胞中均呈阳性表达[27]。在TGFβ1诱导EMT的过程中,不仅可激活依赖Smad信号通路,还可激活非依赖Smad信号通路。ERK可以通过阻断Smad2/3复合物磷酸化及Smad4核易位过程,进而影响TGFβ1/Smad通路发生EMT[28]。
诱导产生EMT的TGFβ1/ERK独立信号通路,可直接通过ERK不依赖Smad引起EMT。有关研究显示抑制ERK信号通路可抑制EMT进程[29]。ERK参与肝脏肿瘤细胞EMT的过程中,HepG2细胞预先被MEK1/2抑制剂处理,TGFβ1诱导之后EMT标志物波形蛋白的分泌明显减少,说明MEK1/2对肝肿瘤细胞EMT有重要影响,推测TGFβ1在肝脏细胞诱导EMT过程存在MEK-ERK通路的参与[27]。有研究表明在BA中轮状病毒(rhesus rotavirus, RRV)可激活MAPK通路,ERK1/2、JNK1/2磷酸化成倍数增加,会促进病毒的复制,加剧胆管的损伤[30]。其引起胆管损伤的过程可能与BA纤维化中胆管上皮的纤维化过程有关。Lobeck等[31]的实验表明,ERK通路参与RRV在胆管细胞中的复制。感染RRV之后的BALB/C小鼠用ERK激活抑制肽Ⅰ处理,结果有66.7%的小鼠出现胆道梗阻症状,而对照组(生理盐水组)出现梗阻症状的比例为100%,21 d死亡率也随着ERK被抑制而降低,提示ERK参与BA肝纤维化过程。ERK在TGFβ1的诱导下可使肝脏肿瘤细胞发生EMT,在BA中对纤维化同样有重要作用,其在BA中的相关机制尚需进一步探索。
(三) TGFβ1/STAT3信号通路信号转换及转录激活因子3(signal transducer and activator of transcription 3, STAT3)与恶性肿瘤、细胞转化、EMT有关。在肺癌和卵巢肿瘤中STAT3可在JAK激酶(janus kinase, JAK)诱导下参与EMT过程,参与肿瘤细胞的侵袭和转移[32]。
在Lin等[33]的实验中,利用Western及免疫印迹实验,发现TGFβ1刺激后肝脏细胞中的波形蛋白、N-钙黏蛋白表达上调,而E-钙黏蛋白的表达下调;同时发现p-JAK、p-STAT3、Twist表达增多;而STAT3抑制剂AG490作用于TGFβ1诱导的肿瘤细胞后,其间质细胞标志因子表达减少。其实验表明STAT3、JAK、Twist在TGFβ1的刺激下参与肝脏肿瘤细胞的EMT进程。Wang等[34]的实验中发现TGFβ1诱导肝脏肿瘤细胞之后,STAT3、p-STAT3及波形蛋白的表达上调。在EMT过程中,TGFβ1激活JAK,激活的JAK收集STAT3单体产生同源或异源二聚体;随后,细胞核和特定DNA序列调节靶基因的转录,其过程与Twist有关[29, 33]。在Luo等[35]的实验中,通过建立基因数据库及进行相关实验,发现BA、原发性胆管炎、原发性硬化性胆管炎中存在包括STAT3在内的共同基因。Xiao等[36]的实验显示在BA肝组织免疫组化后可见p-STAT3核染色,提示STAT3参与BA肝纤维化过程。BA EMT进程还可由非TGFβ1诱导产生,如Notch通路、Hh信号通路、Wnt通路等[37, 38]。
四、展望Kasai手术的广泛开展使BA患者获得更多的生存机会,但肝纤维化仍可持续进展,故自体肝生存率较低,肝移植率较高。有效缓解甚至逆转肝纤维化是改善BA自体肝生存率的重要条件。TGFβ1可通过Smad以及不依赖Smad信号通路诱导EMT发生,促进肝纤维化进程。抑制EMT过程可缓解BA肝纤维化,然而抑制TGFβ1的做法并不可取,TGFβ1除诱导EMT外,在炎症抑制、免疫调节等多个方面发挥重要作用,抑制TGFβ1会同时抑制体内其他反应。抑制通路中的相关因子也可以抑制EMT进程。miR-200b等相关miRNA可抑制甚至逆转EMT,其在肝脏肿瘤细胞中研究较多,可为进一步拓展研究提供思路。间质细胞标记因子在纤维化过程中存在一个峰值,说明在肝纤维化过程中,可能存在EMT过程较活跃的特殊时期,此时抑制通路相关因子延缓肝纤维化更加容易。目前BA肝纤维化相关通路研究远不及其他肝脏疾病,其诱导EMT相关信号通路尚不明确。延缓纤维化过程除作用于转录因子外,是否可以通过作用其细胞膜中TGFβ1相关受体而不影响TGFβ1在体内的其他重要功能,或特异性截断信号自胞浆向细胞核中转导的过程来实现减缓肝纤维化的作用,还有待发现更多特异性的相关因子来实现。
[1] |
Bezerra JA, Wells RG, Mack CL, et al. Biliary atresia: clinical and research challenges for the twenty-first century[J]. Hepatology, 2018, 68(3): 1163-1173. DOI:10.1002/hep.29905 |
[2] |
Ortiz-Perez A, Donnelly B, Temple H, et al. Innate immunity and pathogenesis of biliary atresia[J]. Front Immunol, 2020, 11: 329. DOI:10.3389/fimmu.2020.00329 |
[3] |
余晨, 詹江华, 高伟, 等. 胆道闭锁Kasai术后肝移植患儿不同自体肝生存的临床与病理分析[J]. 临床小儿外科杂志, 2017, 16(6): 552-558. Yu C, Zhan JH, Gao W, et al. Clinicopathological analysis with different native liver survivals for biliary atresia after Kasai[J]. J Clin Ped Sur, 2017, 16(6): 552-558. DOI:10.3969/j.issn.1671-6353.2017.06.007 |
[4] |
Harada K. Sclerosing and obstructive cholangiopathy in biliary atresia: mechanisms and association with biliary innate immunity[J]. Pediatr Surg Int, 2017, 33(12): 1243-1248. DOI:10.1007/s00383-017-4154-8 |
[5] |
Díaz R, Kim JW, Hui JJ, et al. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis[J]. Hum Pathol, 2009, 40(6): 908. DOI:10.1016/j.humpath.2007.05.021 |
[6] |
Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions[J]. Clin Invest, 2009, 119(6): 1429-1437. DOI:10.1172/JCI36183 |
[7] |
高婷. TGF-β1信号通路相关蛋白在胆道闭锁肝脏中的表达及作用[D]. 天津: 天津医科大学, 2017. Gao T. Expression and significance of the TGF-β1 signaling pathways related protein in biliary atresia[D]. Tianjin: Tianjin Medical University, 2017. |
[8] |
Chen J, Zhu HD, Liu QM, et al. DEPTOR induces a partial epithelial-to-mesenchymal transition and metastasis via autocrine TGFβ1 signaling and is associated with poor prognosis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 273. DOI:10.1186/s13046-019-1220-1 |
[9] |
Zhang S, Sun WY, Wu JJ, et al. Decreased expression of the type Ⅲ TGF-β receptor enhances metastasis and invasion in hepatocellular carcinoma progression[J]. Oncol Rep, 2016, 35(4): 2373-2381. DOI:10.3892/or.2016.4615 |
[10] |
高婷, 詹江华, 丁美云, 等. 整合素αvβ8、p38及ERK1/2在胆道闭锁患儿肝脏中的表达及意义[J]. 天津医药, 2016, 44(7): 821-824. Gao T, Zhan JH, Ding MY, et al. Expression and significance of integrin αvβ8, p38 and ERK1/2 in liver of children with biliary atresia[J]. Tianjin Med J, 2016, 44(7): 821-824. DOI:10.11958/20160362 |
[11] |
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3): 178-196. DOI:10.1038/nrm3758 |
[12] |
Wang JY, Cheng H, Zhang HY, et al. Suppressing microRNA-29c promotes biliary atresia-related fibrosis by targeting DNMT3A and DNMT3B[J]. Cell Mol Biol Lett, 2019, 24: 10. DOI:10.1186/s11658-018-0134-9 |
[13] |
Schmierer B, Hill CS. TGF beta-SMAD signal transduction: molecular specificity and functional flexibility[J]. Nat Rev Mol Cell Biol, 2007, 8(12): 970-982. DOI:10.1038/nrm2297 |
[14] |
Triantafyllou EA, Mylonis I, Simos G, et al. Hypoxia induces pro-fibrotic and fibrosis marker genes in hepatocellular carcinoma cells independently of inflammatory stimulation and the NF-κΒ pathway[J]. Hypoxia (Auckl), 2019, 7: 87-91. DOI:10.2147/HP.S235967 |
[15] |
刘东红, 林峰, 杨再兴, 等. 原发性胆汁性胆管炎肝内胆管上皮细胞TLR4及上皮-间质转化相关标志物的表达[J]. 温州医科大学学报, 2018, 48(8): 567-571. Liu DH, Lin F, Yang ZX, et al. Expression of TLR4 and epithelial-mesenchymal transition-related markers in intrahepatic biliary epithelial cells of patients with primary biliary cholangitis[J]. Journal of Wenzhou Medical University, 2018, 48(8): 567-571. DOI:10.3969/j.issn.2095-9400.2018.08.005 |
[16] |
Zeisberg M, Yang C, Martino M, et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition[J]. Biol Chem, 2007, 282(32): 23337-23347. DOI:10.1074/jbc.M700194200 |
[17] |
Deng H, Wang HF, Gao YB, et al. Hepatic progenitor cell represents a transitioning cell populaition between liver epithelium and stroma[J]. Med Hypotheses, 2017, 76(6): 809-812. DOI:10.1016/j.mehy.2011.02.024 |
[18] |
Shen WJ, Chen G, Wang M, et al. Liver fibrosis in biliary atresia[J]. World J Pediatr, 2019, 15(2): 117-123. DOI:10.1007/s12519-018-0203-1 |
[19] |
Deng YH, Pu CL, Li YC, et al. Analysis of biliary epithelial-mesenchymal transition in portal tract fibrogenesis in biliary atresia[J]. Dig Dis Sci, 2011, 56(3): 731-740. DOI:10.1007/s10620-010-1347-6 |
[20] |
Xiao Y, Zhou Y, Chen Y, et al. The expression of epithelial-mesenchymal transition-related proteins in biliary epithelial cells is associated with liver fibrosis in biliary atresia[J]. Pediatr Res, 2015, 77(2): 310-315. DOI:10.1038/pr.2014.181 |
[21] |
胡传兵. BDL所致幼鼠胆道闭锁后肝脏纤维化相关生物分子的时序性变化[D]. 沈阳: 中国医科大学, 2009. Hu CB. The sequencial changes of hepatic fibrosis relevant genes in rat biliary atresia induced by bile duct ligation[D]. Shenyang: China Medical University, 2009. |
[22] |
Zhao D, Luo Y, Xia Y, et al. MicroRNA-19b expression in human biliary atresia specimens and its role in BA-related fibrosis[J]. Dig Dis Sci, 2017, 62(3): 689-698. DOI:10.1007/s10620-016-4411-z |
[23] |
Lin YC, Luo HY, Wang X, et al. Flavanones from sedum sarmentosum bunge alleviate CCl4-induced liver fibrosis in rats by targeting TGF-β1/TβR/Smad pathway in turn inhibiting epithelial mesenchymal transition[J]. Evid Based Complement Alternat Med, 2018, 2018: 3080837. DOI:10.1155/2018/3080837 |
[24] |
丁美云, 詹江华, 赵丽, 等. TGF-β1、Smad2在胆道闭锁肝纤维化中的作用[J]. 天津医药, 2016, 44(7): 810-813. Ding MY, Zhan JH, Zhao L, et al. The effects of TGF-β1 and Smad2 on liver fibrosis of biliary atresia[J]. Tianjin Med J, 2016, 44(7): 810-813. DOI:10.11958/20150242 |
[25] |
Zou YT, Li SY, Li ZL, et al. MiR-146a attenuates liver fibrosis by inhibiting transforming growth factor-β1 mediated epithelial-mesenchymal transition in hepatocytes[J]. Cell Signal, 2019, 58: 1-8. DOI:10.1016/j.cellsig.2019.01.012 |
[26] |
Zhang T, Liu W, Meng W, et al. Downregulation of miR-542-3p promotes cancer metastasis through activating TGF-β/Smad signaling in hepatocellular carcinoma[J]. Onco Targets Ther, 2018, 11: 1929-1939. DOI:10.2147/OTT.S154416 |
[27] |
Liu L, Li NF, Zhang Q, et al. Inhibition of ERK 1/2 signaling impairs the promoting effects of TGFβ1 on hepatocellular carcinoma cell invasion and epithelial-mesenchymal transition[J]. Oncol Res, 2017, 25(9): 1607-1616. DOI:10.3727/09650401X14938093512742 |
[28] |
Jiang YF, Wu C, Boye A, et al. MAPK inhibitors modulate Smad2/3/4 complex cyto-nuclear translocation in myofibroblasts via Imp7/8mediation[J]. Mol Cell Biochem, 2015, 406(1/2): 255-262. DOI:10.1007/s11010-015-2443-x |
[29] |
Zhang L, Zhou J, Qin XK, et al. Astragaloside IV inhibits the invasion and metastasis of SiHa cervical cancer cells via the TGF β1 mediated PI3K and MAPK pathways[J]. Oncol Rep, 2019, 41(5): 2975-2986. DOI:10.3892/or.2019.7062 |
[30] |
Jafri M, Donnelly B, McNeal M, et al. MAPK signaling contributes to rotaviral-induced cholangiocyte injury and viral replication[J]. Surgery, 2007, 142(2): 192-201. DOI:10.1016/j.surg.2007.03.008 |
[31] |
Lobeck I, Donnelly B, Dupree P, et al. Rhesus rotavirus VP6 regulates ERK-dependent calcium influx in cholangiocytes[J]. Virology, 2016, 499: 185-195. DOI:10.1016/j.virol.2016.09.014 |
[32] |
Wendt MK, Balanis N, Carlin CR, et al. STAT3 and epithelial?mesenchymal transitions in carcinomas[J]. JAKSTAT, 2014, 3(1): e28975. DOI:10.4161/jkst.28975 |
[33] |
Lin XL, Liu MH, Liu YB, et al. Transforming growth factor β1 promotes migration and invasion in HepG2 cells: Epithelial-to-mesenchymal transition via JAK/STAT3 signaling[J]. Int J Mol Med, 2018, 41(1): 129-136. DOI:10.3892/ijmm.2017.3228 |
[34] |
Wang B, Liu T, Wu JC, et al. STAT3 aggravates TGF-β1-induced hepatic epithelial-to-mesenchymal transition and migration[J]. Biomed Pharmacother, 2018, 98: 214-221. DOI:10.1016/j.biopha.2017.12.035 |
[35] |
Luo Z, Jegga AG, Bezerra JA. Gene-disease associations identify a connectome with shared molecular pathways in human cholangiopathies[J]. Hepatology, 2018, 67(2): 676-689. DOI:10.1002/hep.29504 |
[36] |
Xiao YT, Wang J, Yan WH, et al. Dysregulated miR-124 and miR-200 expression contribute to cholangiocyte proliferation in the cholestatic liver by targeting IL-6/STAT3 signalling[J]. Hepatol, 2015, 62(4): 889-896. DOI:10.1016/j.jhep.2014.10.033 |
[37] |
Mao YZ, Tang ST, Yang L, et al. Inhibition of the notch signaling pathway reduces the differentiation of hepatic progenitor cells into cholangiocytes in biliary atresia[J]. Cell Physiol Biochem, 2018, 49(3): 1074-1082. DOI:10.1159/000493290 |
[38] |
贾金富, 詹江华, 余晨, 等. Notch-1、Jagged-1、Hes-1在胆道闭锁患儿肝纤维化中的表达及意义[J]. 中华小儿外科杂志, 2019, 40(5): 399-403. Jia JF, Zhan JH, Yu C, et al. Expressions and significance of Notch-1, Jagged-1 and Hes-1 in liver fibrosis of children with biliary atresia[J]. Chin J Pediatr Surg, 2019, 40(5): 399-403. DOI:10.3760/cma.j.issn.0253-3006.2019.05.004 |