2. 新疆医科大学第一附属医院(新疆维吾尔自治区乌鲁木齐市, 830000)
2. Department Ⅱ of Pediatric Surgery, First Affiliated Hospital, Xinjiang Medical University, Urumqi 830000, China
长段缺失型食管闭锁(long-gap esophageal atresia, LGEA)曾一度被模糊定义为食管两端不能一期吻合的先天性食管闭锁(esophageal atresia, EA)。食管闭锁国际网络(International Network of Esophageal Atresia, INoEA)将LGEA定义为腹部无空气的EA[1]。欧洲罕见遗传性先天性异常参考网络[European Reference Network for Rare Inherited and Congenital (Digestive and Gastrointestinal) Anomalies, ERNICA]将“腹部无空气的食管闭锁”或“食管断端间隙在3个或3个以上椎体的食管闭锁”作为LGEA的诊断依据,但是否只有Ⅰ、Ⅱ型EA或食管气管瘘在隆突及以下的EA可被认定为LGEA目前尚未达成共识[2]。LGEA的治疗方式包括保留自身食管的手术、食管替代手术以及组织工程学技术的应用。保留自身食管的手术方式被认为是治疗LGEA的最佳选择,包括延迟一期吻合术、食管延长术等[3, 4]。目前延长食管的方法有很多,但其最佳术式尚未达成共识[5]。当不能选择保留自身食管时,食管替代手术就成为必然的选择;食管替代手术包括结肠间置术、胃间置术、空肠间置术和胃管重建术等,究竟哪一种术式是食管替代术的最佳选择,目前尚没有系统证据佐证[6-8]。
一、保留自身食管的手术方式1. 延迟一期吻合手术:延迟一期修复LGEA的方法是在食管近段盲端被口腔分泌物、食管远端盲端被胃食管反流刺激而扩张的情况下,经过6周至9个月时间使食管生长达到一期吻合的条件再行修复手术,这种方法可能因食管断端间隙过远,无法在预期时间内达到一期吻合的条件,进而无法行修复手术[9]。1981年,Puri等[10]提出:在没有任何形式的机械牵引下,LGEA食管段自然生长的速度较躯体生长的速度快;随后他们进一步指出:食管节段的最大自然生长速率发生在出生后8~12周,因此,延迟一期吻合手术的最佳时机为婴儿出生后12周左右[11]。
2. 肌切开术:Livaditis环形肌切开术和Kimura螺旋肌切开术可在食管原有长度上增加1~2 cm,多用于食管两端间隔长度为4.5~6.5 cm的LGEA[9]。需要注意的是Livaditis环形肌切开术和Kimura螺旋肌切开术在保留患者自身食管的同时,常易导致吻合口漏、复发食管气管瘘及食管憩室等并发症[5]。针对这种情况,有学者提出采用V形肌切开术,即将V形切口替代环形或螺旋形切口,切口角度约60°,避免压力集中在同一方向而使食管局部肿胀以致破裂,确保提供一个长度相对长且坚固的食管[5, 12]。需要注意的是,不论采取何种肌切开术,手术后的食管都可能以不协调收缩的形式出现运动障碍[12, 13]。
3. 分期牵引修复术、多期胸外食管延伸术:机械牵引手术方法如分期牵引修复术和多期胸外食管延伸术可以加速组织生长,允许食管更早吻合。多期胸外食管延伸术需要行近端食管颈部皮肤造口,然后通过多次手术将其造口下移至胸壁,直至长度可与食管远端盲端进行吻合[14]。行分期牵引修复术,需要开胸,在近远端食管盲端分别缝上牵引线,并将丝线穿出胸壁,通过阶段性施力,达到缩短食管两盲端间距离的目的[14]。多期胸外食管延伸术相比于分期牵引修复术,其造口护理难度更大、感染风险更高[15]。食管壁在张力作用下被牵引缝线切断是分期牵引修复术的特有并发症,目前可通过使用胸腔镜下延长术或改进缝合技术来改善[16, 17]。
4. 瘘管缝合术:相比分期牵引修复术和多期胸外食管延伸术,瘘管缝合术更加简单有效,用一根粗线将两食管管腔进行缝合,同时将两食管盲端管壁进行缝合,可在压力下形成食管端端吻合,并形成自发性瘘管[18]。目前瘘管缝合术至少可用于食管两端间隔长度为4 cm的LGEA患者[18]。食管固定术是对食管两端不进行正式吻合的缝合,是一种改良的瘘管缝合术,可形成食管食管瘘,使口服喂养成为可能,且避免了多次开胸带来的风险及并发症[19]。但采用这种方法,胃食管反流的发生率较高,如果药物治疗胃食管反流失败,应考虑早期行胃底折叠术[19]。
5. 探条延长术:探条延长术是从口腔向下插入支具到食管上端盲端,通过胃造口术,使用同一支具给予远端食管盲端向上的压力,在组织拉伸生长的作用下增加食管长度,当食管近、远端两个盲端发生重叠时,即可采用食管端端吻合术[20]。这种方法可以有效帮助食管生长、保存自身食管,而无需多次手术和避免之后的严重并发症[20]。但这种术式易发生食管穿孔,因此,应严格把控向食管盲端施加的纵向力。
6. 磁吻合技术:磁吻合技术可用于连接空腔脏器如LGEA的治疗。将两磁铁分别置于食管两盲端,在磁力的作用下,磁铁可牵拉食管盲端,并使磁铁间组织缺血坏死,边缘重新愈合并连接,从而实现食管端端吻合[21, 22]。需要注意的是,磁铁间的吸引力可随着食管两盲端分隔距离的缩短而呈指数增长,因而随着治疗过程中食管两端间隔减小,有食管撕裂或穿孔的危险,即可能发生吻合口瘘[21]。为了减少这种并发症,有研究人员设计了液压辅助磁吻合装置,使用一个带有磁铁的导管,在导管的末端放置一个液压活塞,磁铁吸引力可以帮助导管延长食管,而液压活塞可以防止磁铁施加过大的吸引力,从而避免食管过早连接甚至发生撕裂和穿孔;另外,活塞还可以根据液压来测量估计食管的张力[23]。
食管狭窄也是磁吻合技术的常见并发症,目前可通过食管扩张、食管支架或手术切除狭窄段等方式治疗[24]。磁吻合技术也可用于先天性或后天性食管狭窄的治疗。当食管盲端距离超过4 cm时则不再适合使用磁吻合技术,因为磁铁只有在磁场强度足够的距离范围下才能起到吸引和连接的作用[24]。有研究报道,在改良的胸腔镜分期牵引修复术2周后,缝合食管近端和远端,留下1.5 cm间隙,再于内镜下在食管近、远端盲端内放置磁铁进行磁吻合,第4天时发生磁耦合,第13天去除磁铁后食管通畅,这说明磁吻合术也可以作为二期食管延长的一种方式来修复LGEA[25]。
二、食管替代术1. 腹腔镜辅助胃间置术:胃间置术是治疗LGEA的常用术式之一,具有血供良好、可用于替代食管的长度较充足、技术相对简单、只有一个吻合口等优势[4, 26]。手术后短期并发症(如吻合口漏、再手术和食管狭窄等)多在可接受范围内[27]。缺点是术后胃食管反流、胃排空延迟症状严重,胃的占位性尤其是全胃位移可引起呼吸功能障碍[14, 28];另外,部分患者至成年后仍需补充喂养,或存在吻合口狭窄相关症状[29]。现有文献报道可以采用腹腔镜辅助胃间置术,在腹腔镜下进行钝性剥离,经食管裂孔建立后纵隔路径,通过后纵隔路径至颈部吻合食管近端行胃间置术;同时行幽门扩张术,即用气囊扩张幽门,以减少术后并发胃排空延迟的风险。术后并发症包括复发性胸腔积液、气胸、一过性Horner综合征和一过性复发的神经不完全麻痹,但发生率较开放性胃间置术低,且在长期随访中,未出现胃排空延迟症状。腹腔镜后纵隔路径的建立避免了胸腔结构的改变,而幽门扩张技术有效地防止了胃排空延迟,改善了患者预后[4]。
2. 带蒂空肠间置术:1907年Subhasis等[30]最早提出空肠可作为食管的替代物,其与食管大小匹配,且具有特有的蠕动功能[31, 32]。对比延迟一期吻合或者食管延长技术,空肠间置术降低了吻合口张力,减少了穿孔、复发瘘等风险,且维持了正常的解剖结构,能有效减少术后胃食管反流的发生[33]。空肠间置术的主要难点在于移动肠管时如何保持充分的血流灌注[34]。与自由空肠肠段移植不同,带蒂空肠间置术在维持远端空肠血液供应的同时,其微血管吻合增加了近端空肠血管供应,保证了血流供应,减少了空肠间置术的特异性并发症,降低了死亡率[35, 36]。获得足够长度的空肠移植物,需要牺牲20~30 cm的小肠长度,而采用过长的移植物又会增加裂孔疝的风险,这就需要手术者在术中正确修剪空肠移植物[33]。有研究采用双重增压空肠间置术作为胃或结肠间置术失败后的挽救手术,双重增压空肠间置术是用带蒂空肠与两个额外的动脉和静脉进行吻合,即空肠血管与纵隔血管、空肠血管与胃或结肠间置术失败后保留的血管进行吻合[3]。
3. 后结肠吻合术+胸骨后结肠旁路术:1921年Chávez-Aguilar等[37]首次报道了结肠代食管术。胃结肠反流是结肠间置术后可能发生的早期并发症[38, 39]。降低其发生率是结肠间置术的技术挑战之一[40]。可以减少消化性溃疡的发生是结肠间置术特有的优势[41]。然而,胃内容物大量反流至结肠导管导致消化性溃疡并不是唯一的问题,胃结肠反流可阻碍胃的正常排空,也可导致其他致命呼吸系统并发症[40]。对于所选结肠段的吻合路径通常有3种: 经胸、后纵隔和胸骨后,胸骨后路径技术上更简单,无需开胸,可以保护移植物;此外,消除了移植物坏死时胸腔污染的风险[37]。后结肠吻合术与胸骨后结肠旁路术相结合,重点是将结肠皮瓣远端与胃后表面吻合,以压迫结肠导管防止反流[40]。
4. 胃管重建术:胃管重建术即利用胃在展开后可提供足够长度的特点,在保持胃体的情况下,胃管成形代替部分食管[42]。由于胃管重建术具有手术技巧简单、移植物长度充足、血供良好、吻合次数少等优点,虽然其应用较胃间置术少,但其胸腔胃的发生率较胃间置术低,被作为一种有效的食管重建方法得到广泛应用[14, 43, 44]。但胃管间置术后常发生吻合口狭窄、胃排空障碍等并发症[6];且胃黏膜分泌胃酸可能刺激剩余食管,导致其结构改变,出现Barrett食管等[45]。因此,定期体检评估吻合部狭窄情况以及抗反流药物治疗很重要[6]。
三、组织工程学技术的应用1. 细胞支架:用体内组织工程学技术治疗LGEA,从使用合成材料作为机械支撑,到引入生物成分作为食管构建的一部分,近年来的方法是使用含有细胞或细胞外基质的自然衍生支架[46]。合成材料可以提供支撑,但不能完全提供食管特定的生理功能,也不能随着人体的生长而完善[46]。而利用兔食管平滑肌细胞和上皮细胞在聚己内酯(ε)-己内酯网状物上的组织工程化,因快速降解而存在渗漏和假憩室形成的风险[47]。自然衍生的支架保留了天然的细胞外基质结构和组成,为相关细胞类型的锚定和生长提供了条件[46]。
2. 机器人植入物刺激组织再生:当病变部位仍存在部分健康组织时,机械可诱导其生长[48]。目前临床上已将机器人植入物刺激组织再生技术应用于诱导骨的生长及皮肤组织扩张[49]。相关食道测试研究表明,在动物清醒、活动和能够正常进食的情况下,机械施加的力可以诱导细胞增殖和器官延长,而直径不减小[50]。机器人的设计目的是通过计算机控制牵引力,诱导食管延长,这种方式可避免传统组织工程合成支架的免疫原性反应[48]。
目前LGEA的最佳手术方式尚未达成共识,LGEA的疾病定义及其间隙长度的测量方法也还存在较大的差异。对于腹部无气体的Ⅰ型食管闭锁,两断端间距测量的最常见时间点是胃造口术后2周[51]。就保留自身食管的出发点而言,大多数小儿外科医生认为延迟一期吻合手术是较好的选择,但如果食管间隔太远,期待疗法未见明显成效,则只能放弃延迟一期吻合术[20]。我们试图寻求一种以最少破坏获得最佳食管延长效果,且并发症最少的术式[5]。V形肌切开术、胸腔镜下延长术、磁吻合技术是探索的结果[5, 16, 21]。通常患者年龄超过9个月,可达到站立位并能承受大手术时,可以接受食管替代术[52]。结肠间置术具有足够的移植物长度,但胃结肠反流严重,采用后结肠吻合术与胸骨后结肠旁路术相结合的方式能够改善此情况[40]。空肠与食管有相似的直径,且具有蠕动功能,但手术技术复杂,需要进行3次吻合术,且血供极不稳定,因而目前希望通过增压的方式保证皮瓣完整[36]。胃间置术后易并发呼吸系统功能障碍,腹腔镜辅助胃间置术可降低这种并发症的发生率[4]。体内组织工程技术是基于细胞种子支架的植入或使用机械刺激现有组织来诱导其生长的一种非常有前景的治疗方法,值得临床更深入研究[46]。
[1] |
Van der zee DC, Bagolan P, Faure C, et al. Position paper of inoea working group on long-gap esophageal atresia: for better care[J]. Frontiers in Pediatrics, 2017, 5: 63. DOI:10.3389/fped.2017.00063 |
[2] |
Dingemann C, Eaton S, Aksnes G, et al. Ernica consensus conference on the management of patients with long-gap esophageal atresia: perioperative, surgical, and long-term management[J]. Eur J Pediatr Surg, 2021, 31(3): 214-225. DOI:10.1055/s-0040-1713932 |
[3] |
Ganske IM, Firriolo JM, Nuzzi LC, et al. Double supercharged jejunal interposition for late salvage of long-gap esophageal atresia[J]. Ann Plast Surg, 2018, 81(5): 553-559. DOI:10.1097/SAP.0000000000001520 |
[4] |
Lieber J, Schmidt A, Kumpf M, et al. Functional outcome after laparoscopic assisted gastric transposition including pyloric dilatation in long-gap esophageal atresia[J]. J Pediatr Surg, 2020, 55(11): 2335-2341. DOI:10.1016/j.jpedsurg.2020.06.004 |
[5] |
Zimmer J, Eaton S, Murchison LE, et al. State of play: eight decades of surgery for esophageal atresia[J]. Eur J Pediatr Surg, 2019, 29(1): 39-48. DOI:10.1055/s-0038-1668150 |
[6] |
Youn J, Park T, Kim S, et al. Prospective evaluation of clinical outcomes and quality of life after gastric tube interposition as esophageal reconstruction in children[J]. Medicine, 2018, 97(52): e13801. DOI:10.1097/MD.0000000000013801 |
[7] |
Liu J, Yang Y, Zheng C, et al. Surgical outcomes of different approaches to esophageal replacement in long-gap esophageal atresia: a systematic review[J]. Medicine, 2017, 96(21): e6942. DOI:10.1097/MD.0000000000006942 |
[8] |
Garritano S, Irino T, Scandavini C, et al. Long-term functional outcomes after replacement of the esophagus in pediatric patients: a systematic literature review[J]. J Pediatr Surg, 2017, 52(9): 1398-1408. DOI:10.1016/j.jpedsurg.2017.05.034 |
[9] |
Baird R, Lal DR, Ricca RL, et al. Management of long gap esophageal atresia: a systematic review and evidence-based guidelines from the apsa outcomes and evidence based practice committee[J]. J Pediatr Surg, 2019, 54(4): 675-687. DOI:10.1016/j.jpedsurg.2018.12.019 |
[10] |
Puri P, Blake N, O'donnell B, et al. Delayed primary anastomosis following spontaneous growth of esophageal segments in esophageal atresia[J]. J Pediatr Surg, 1981, 16(2): 180-183. DOI:10.1016/s0022-3468(81)80347-8 |
[11] |
Puri P, Ninan GK, Blake NS, et al. Delayed primary anastomosis for esophageal atresia: 18 months' to 11 years' follow-up[J]. J Pediatr Surg, 1992, 27(8): 1127-1130. DOI:10.1016/0022-3468(92)90573-p |
[12] |
Beger B, Beger O. A new esophageal elongation technique for long-gap esophageal atresia: in vitro comparison of myotomy techniques[J]. Esophagus, 2019, 16(1): 93-97. DOI:10.1007/s10388-018-0636-6 |
[13] |
Singh A, Bajpai M, Sharma N, et al. Experience with livaditis circular myotomy in management of long gap TEF[J]. Afr J Paediatr Surg, 2014, 11(1): 35-38. DOI:10.4103/0189-6725.129212 |
[14] |
孙苏娜, 王俊. 长段缺失型食管闭锁的诊治现状与进展[J]. 临床小儿外科杂志, 2018, 17(3): 190-196. Sun SN, Wang J. Current status and future perspectives of diagnosing and treating long gap esophageal atresia[J]. J Clin Ped Sur, 2018, 17(3): 190-196. DOI:10.3969/j.issn.1671-6353.2018.03.007 |
[15] |
Sroka M, Wachowiak R, Losin M, et al. The foker technique (ft) and kimura advancement (ka) for the treatment of children with long-gap esophageal atresia (lgea): lessons learned at two european centers[J]. Eur J Pediatr Surg, 2013, 23(1): 3-7. DOI:10.1055/s-0033-1333891 |
[16] |
Abraham MK, Sudarsanan B, Viswanath N, et al. A safer way of suturing in Foker's technique[J]. J Pediatr Surg, 2013, 48(8): 1819-1821. DOI:10.1016/j.jpedsurg.2013.03.052 |
[17] |
van der zee DC, Gallo G, Tytgat SH. Thoracoscopic traction technique in long gap esophageal atresia: entering a new era[J]. Surg Endosc, 2015, 29(11): 3324-3330. DOI:10.1007/s00464-015-4091-3 |
[18] |
Janek K, Meagher D, Goodwin C. Suture fistula revisited for long gap esophageal atresia[J]. J Pediatr Surg, 2019, 54(3): 600-603. DOI:10.1016/j.jpedsurg.2018.10.100 |
[19] |
Chumfong I, Lee H, Padilla B, et al. Esophagoesophagopexy technique for assisted fistulization of esophageal atresia[J]. Pediatr Surg Int, 2018, 34(1): 63-69. DOI:10.1007/s00383-017-4164-6 |
[20] |
Sun S, Pan W, Wu W, et al. Elongation of esophageal segments by bougienage stretching technique for long gap esophageal atresia to achieve delayed primary anastomosis by thoracotomy or thoracoscopic repair: a first experience from china[J]. J Pediatr Surg, 2018, 53(8): 1584-1587. DOI:10.1016/j.jpedsurg.2017.12.009 |
[21] |
Liu S, Lv Y, Fang Y, et al. Magnetic compression for anastomosis in treating an infant born with long-gap oesophageal atresia: a case report[J]. Medicine, 2020, 99(42): e22472. DOI:10.1097/MD.0000000000022472 |
[22] |
刘仕琪, 吕毅. 磁吻合技术治疗先天性长段食管闭锁与吻合口狭窄新进展[J]. 临床小儿外科杂志, 2019, 18(6): 447-449, 455. Liu SQ, Lv Y. Recent advances of magnetic compression anastomosis technique for esophageal atresia and anastomotic strictures[J]. J Clin Ped Sur, 2019, 18(6): 447-449, 455. DOI:10.3969/j.issn.1671-6353.2019.06.003 |
[23] |
Noh M, Mooney DP, Trumper DL. Magnet-assisted hydraulic bougienage for correction of long-gap esophageal atresia[J]. IEEE Trans Biomed Eng, 2018, 65(10): 2178-2189. DOI:10.1109/TBME.2017.2786733 |
[24] |
Slater BJ, Borobia P, Lovvorn HN, et al. Use of magnets as a minimally invasive approach for anastomosis in esophageal atresia: long-term outcomes[J]. J Laparoendosc Adv Surg Tech A, 2019, 29(10): 1202-1206. DOI:10.1089/lap.2019.0199 |
[25] |
Dorman RM, Vali K, Harmon CM, et al. Repair of esophageal atresia with proximal fistula using endoscopic magnetic compression anastomosis (magnamosis) after staged lengthening[J]. Pediatr Surg Int, 2016, 32(5): 525-528. DOI:10.1007/s00383-016-3889-y |
[26] |
Hirschl RB, Yardeni D, Oldham K, et al. Gastric transposition for esophageal replacement in children: experience with 41 consecutive cases with special emphasis on esophageal atresia[J]. Ann Surg, 2002, 236(4): 531-539. DOI:10.1097/01.SLA.0000030752.45065.D1 |
[27] |
Spitz L, Kiely E, Pierro A. Gastric transposition in children-a 21-year experience[J]. J Pediatr Surg, 2004, 39(3): 276-281. DOI:10.1016/j.jpedsurg.2003.11.032 |
[28] |
Castle SL, Isani M, Torres MB, et al. Tubularized gastric conduit is more desirable in pediatric patients treated with minimally invasive esophagectomy and gastric pull-up[J]. J Laparoendosc Adv Surg Tech A, 2017, 27(4): 427-429. DOI:10.1089/lap.2016.0510 |
[29] |
Hannon E, Eaton S, Curry JI, et al. Outcomes in adulthood of gastric transposition for complex and long gap esophageal atresia[J]. J Pediatr Surg, 2020, 55(4): 639-645. DOI:10.1016/j.jpedsurg.2019.08.012 |
[30] |
Subhasis RC, Rajiv C, Kumar SA, et al. Surgical treatment of massive splenomegaly and severe hypersplenism secondary to extrahepatic portal venous obstruction in children[J]. Surgery Today, 2007, 37(1): 19-23. DOI:10.007/s00595-006-3333-3 |
[31] |
Chen HC, Rampazzo A, Gharb BB, et al. Motility differences in free colon and free jejunum flaps for reconstruction of the cervical esophagus[J]. Plast Reconstr Surg, 2008, 122(5): 1410-1416. DOI:10.1097/PRS.0b013e31818820f4 |
[32] |
Bax KM. Jejunum for bridging long-gap esophageal atresia[J]. Semin Pediatr Surg, 2009, 18(1): 34-39. DOI:10.1053/j.sempedsurg.2008.10.007 |
[33] |
Platt E, Mcnally J, Cusick E. Pedicled jejunal interposition for long gap esophageal atresia[J]. J Pediatr Surg, 2019, 54(8): 1557-1562. DOI:10.1016/j.jpedsurg.2018.10.108 |
[34] |
Swisher SG, Hofstetter WL, Miller MJ. The supercharged microvascular jejunal interposition[J]. Semin Thorac Cardiovasc Surg, 2007, 19(1): 56-65. DOI:10.1053/j.semtcvs.2006.11.003 |
[35] |
Ascioti AJ, Hofstetter WL, Miller MJ, et al. Long-segment, supercharged, pedicled jejunal flap for total esophageal reconstruction[J]. J Thorac Cardiovasc Surg, 2005, 130(5): 1391-1398. DOI:10.1016/j.jtcvs.2005.06.032 |
[36] |
Firriolo JM, Nuzzi LC, Ganske IM, et al. Supercharged jejunal interposition: a reliable esophageal replacement in pediatric patients[J]. Plast Reconstr Surg, 2019, 143(6): 1266-1276. DOI:10.1097/PRS.0000000000005649 |
[37] |
Chávez-Aguilar AH, Silva-Báez H, Sánchez-Rodríguez YB, et al. Early complications with colon esophageal substitution for children via retrosternal[J]. Gac Med Mex, 2015, 151(3): 323-328. |
[38] |
Hartin CW Jr, Escobar MA, Yamout SZ, et al. Stapled tapering coloplasty to manage colon interposition graft redundancy for long-gap esophageal atresia[J]. J Pediatr Surg, 2008, 43(12): 2311-2314. DOI:10.1016/j.jpedsurg.2008.08.030 |
[39] |
Coopman S, Michaud L, Halna-Tamine M, et al. Long-term outcome of colon interposition after esophagectomy in children[J]. J Pediatr Gastroenterol Nutr, 2008, 47(4): 458-462. DOI:10.1097/MPG.0b013e31815ce55c |
[40] |
Abouzeid AA, Zaki AM, Safoury HS. Posterior cologastric anastomosis: an effective antireflux mechanism in colonic replacement of the esophagus[J]. Ann Thorac Surg, 2016, 101(1): 266-273. DOI:10.1016/j.athoracsur.2015.06.074 |
[41] |
Marks JL, Hofstetter WL. Esophageal reconstruction with alternative conduits[J]. Surg Clin North Am, 2012, 92(5): 1287-1297. DOI:10.1016/j.suc.2012.07.006 |
[42] |
Elfiky MM, El tagy G, Mohamed W, et al. Gastric tube esophagoplasty for pediatric esophageal replacement[J]. J Pediatr Surg, 2017, 52(4): 657-662. DOI:10.1016/j.jpedsurg.2016.12.012 |
[43] |
Atwell JD, Harrison GS. Observations on the role of esophagogastrostomy in infancy and childhood with particular reference to the long-term results and operative mortality[J]. J Pediatr Surg, 1980, 15(3): 303-309. DOI:10.1016/s0022-3468(80)80142-4 |
[44] |
Postlethwait RW. Technique for isoperistaltic gastric tube for esophageal bypass[J]. Ann Surg, 1979, 189(6): 673-676. DOI:10.1097/00000658-197906000-00001 |
[45] |
Lindahl H, Rintala R, Sariola H, et al. Cervical Barrett's esophagus: a common complication of gastric tube reconstruction[J]. J Pediatr Surg, 1990, 25(4): 446-448. DOI:10.1016/0022-3468(90)90391-l |
[46] |
Lee E, Milan A, Urbani L, et al. Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia[J]. Expert Opin Biol Ther, 2017, 17(5): 573-584. DOI:10.1080/14712598.2017.1308482 |
[47] |
Diemer P, Markoew S, Le DQ, et al. Poly-ε-caprolactone mesh as a scaffold for in vivo tissue engineering in rabbit esophagus[J]. Dis Esophagus, 2015, 28(3): 240-245. DOI:10.1111/dote.12172 |
[48] |
Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions[J]. Proc Natl Acad Sci USA, 2015, 112(47): 14452-14459. DOI:10.1073/pnas.1508520112 |
[49] |
Bozkurt A, Groger A, O'dey D, et al. Retrospective analysis of tissue expansion in reconstructive burn surgery: evaluation of complication rates[J]. Burns, 2008, 34(8): 1113-1118. DOI:10.1016/j.burns.2008.05.008 |
[50] |
Damian DD, Price K, Arabagi S, et al. In vivo tissue regeneration with robotic implants[J]. Science Robotics, 2018, 3(14): eaaq0018. DOI:10.1126/scirobotics.aaq0018 |
[51] |
Rossi C, Dòmini M, Aquino A, et al. A Simple and safe method to visualize the inferior pouch in esophageal atresia without fistula[J]. Pediatr Surg Int, 1998, 13(7): 535-536. DOI:10.1007/s003830050395 |
[52] |
Hamza AF, Abdelhay S, Sherif H, et al. Caustic esophageal strictures in children: 30 years' experience[J]. J Pediatr Surg, 2003, 38(6): 828-833. DOI:10.1016/s0022-3468(03)00105-2 |