临床小儿外科杂志  2021, Vol. 20 Issue (3): 273-279  DOI: 10.12260/lcxewkzz.2021.03.014

引用本文  

苏佳鸿, 李守林. 肾素-血管紧张素系统在儿童膀胱尿道功能障碍中的作用研究进展[J]. 临床小儿外科杂志, 2021, 20(3): 273-279.
Su JH, Li SL. Role and treatment advances of renin-angiotensin system in children with vesicourethral dysfunction[J]. Journal of Clinical Pediatric Surgery, 2021, 20(3): 273-279.

基金项目

深圳市医疗卫生三名工程(编号:SZSM201612013);深圳市卫生计生系统科研项目(编号:SZXJ2018045);国家自然科学基金联合基金项目重点支持项目(编号:U1904208)

通信作者

李守林, Email: lishoulinsz@126.com

文章历史

收稿日期:2020-03-24
肾素-血管紧张素系统在儿童膀胱尿道功能障碍中的作用研究进展
苏佳鸿1     综述, 李守林2     审校     
1. 汕头大学深圳儿科临床学院(广东省深圳市, 518038);
2. 深圳市儿童医院泌尿外科(广东省深圳市, 518026)
摘要:膀胱尿道功能障碍临床表现各异,部分患者治疗效果不佳(尤其是神经源性膀胱患者),后期可引起各种严重的并发症,甚至可引起致死性肾功能衰竭。肾素-血管紧张素系统(renin-angiotensin system,RAS)尤其是局部RAS在炎症及器官重塑等方面的作用已被证实,相关研究表明,RAS抑制剂(包括ACEI和ARBs)和新近发现的拮抗轴ACE2-Ang(1-7)-Mas轴具有改善下尿路功能和组织保护等功能。本文主要就ACE-AngⅡ-AT1轴和ACE2-Ang(1-7)-Mas轴在膀胱尿道功能障碍及其相关并发症的作用进行综述,探讨泌尿系统局部RAS作为儿童膀胱尿道功能障碍及其相关并发症药物治疗新靶点的可行性。
关键词肾素-血管紧张素系统/生理学    膀胱疾病/病因学    尿道疾病/病因学    
Role and treatment advances of renin-angiotensin system in children with vesicourethral dysfunction
Su Jiahong1 , Li Shoulin2     
1. Shenzhen Pediatric Clinical College of Shantou University, Shenzhen 518038, China;
2. Department of Urology, Shenzhen Children's Hospital, Shenzhen 518026, China
Abstract: The clinical symptoms of vesicourethral dysfunction vary greatly in children.Sometimes the treatments are ineffective.Thus, various severe complications and even fatal kidney failure appears.The role of renin-angiotensin system (RAS), especially local RAS, has been well-known in inflammation and organ remodeling.RAS inhibitors (including ACEI & ARBs) and ACE2-Ang(1-7)-Mas axis, a newly discovered antagonistic axis, have the functions of relieving lower urinary tract symptoms and offering tissue protection.For exploring the possibility of local renin-angiotensin system in urinary tract as a new target for drug therapy of vesicourethral dysfunction and its related complications in children, this review focused upon the role of ACE-AngⅡ-AT1/ACE2-ang(1-7)-Mas axis in vesicourethral dysfunction as well as its complications.
Key words: Renin-Angiotensin System/PH    Urinary BladderDiseases/ET    Urethral Diseases/ET    

膀胱尿道功能障碍临床表现各异,部分患儿治疗效果不佳,尤其是神经源性膀胱患儿,后期可引起各种严重的并发症,甚至可引起致死性肾功能衰竭。本综述旨在探讨泌尿系统局部肾素-血管紧张素系统作为儿童膀胱尿道功能障碍及其相关并发症药物治疗新靶点的可能性。

一、肾素-血管紧张素系统(renin angitensin system, RAS)概述

RAS包括经典的ACE-AngⅡ-AT1轴和新发现的ACE2-Ang(1-7)-Mas轴,其中ACE-AngⅡ-AT1轴在调节血压、水电解质平衡乃至器官重塑等方面发挥作用,而ACE2-Ang(1-7)-Mas轴的作用尚不明确,主流观点认为其可能拮抗血管紧张素Ⅱ(angitotensin Ⅱ, AngⅡ)在疾病中的负面作用。

(一) ACE-AngⅡ-AT1轴

AngⅡ是ACE-AngⅡ-AT1轴的关键生物活性肽,作用于血管紧张素Ⅱ1型受体(angiotensin Ⅱ type 1 receptor,AT1R)和血管紧张素Ⅱ2型受体(angiotensin Ⅱ Type 2 receptor,AT2R)两种受体亚型。其中,AT1R介导AngⅡ的绝大部分生理作用,除了体液调节作用外,AngⅡ还可以通过局部的RAS调节多种器官系统的细胞生长和功能,在炎症、器官重塑、肿瘤增殖和转移等方面也发挥重要作用,而AT2R介导的功能尚不明确[1]

(二) ACE2-Ang(1-7)-Mas轴

RAS生物活性终产物种类繁多,尤其是ACE2-Ang(1-7)-Mas轴的发现为干预心血管及非心血管疾病带来了许多新的可能性[1]。1988年,Santos等[2]首次在狗的脑干组织发现血管紧张素(1-7)[Angi otensin(1-7), Ang(1-7)], 并验证其由AngⅠ降解得到,但Ang(1-7)沿着绕过血管紧张素转换酶(angiotensin converting enzyme,ACE)的不同路线。2000年,Tipnis等[3]首次报道了血管紧张素转换酶2(angiotensin converting enzyme 2,ACE2)将AngⅡ转化为Ang(1-7)的能力,并确定它是Ang(1-7)形成过程中的关键酶。而在当时,Ang(1-7)一般被认为是Ang Ⅰ和Ang Ⅱ的降解产物,是否具备生物活性尚存在争议。直到2003年,Santos等[4]证实G蛋白偶联受体Mas是Ang(1-7)的特异性受体,再加上之后Mas的拮抗剂A-779及其激动剂AVE0991被发现,关于ACE2-Ang(1-7)-Mas轴相关研究越来越多,才得出相对统一的结论,即Ang(1-7)具有与AngⅡ功能相反的保护作用[4-7]。此外,RAS抑制剂的部分临床益处可能由ACE2/Ang(1-7)/Mas轴介导。有报道称,ACEI和ARBs的应用导致血浆Ang(1-7)的表达增加,其作用也可部分被Mas拮抗剂A-779阻断或减弱[8, 9]

二、儿童膀胱尿道功能障碍性疾病的概述

正常的膀胱尿道功能是在膀胱和尿道括约肌正常发育的前提下,由神经系统控制得以实现的。儿童一般在5岁左右达到正常的排尿控制,然而17% ~22%的儿童5岁以后仍存在排尿功能异常,即膀胱尿道功能障碍,或称下尿路功能障碍(lower urinary tract dysfunction,LUTD)[10]。其临床表现各异,国际儿童尿控协会将其分为:膀胱过度活动(overactive bladder, OAB)、排尿延迟、膀胱活动不足、日间排尿频率异常、阴道反流、膀胱颈功能障碍和Giggle尿失禁[11]。目前针对LUTD的治疗主要包括原发病治疗、保守治疗、手术治疗等。部分患者治疗效果不佳(尤其是神经源性膀胱患者),后期由于膀胱内压持续增高合并长期上/下尿路感染(urinary tract infection, UTI),可导致膀胱壁纤维化、反流性肾病(reflux nephropathy, RN)和梗阻性肾病(obstructive nephropathy, ON)等严重并发症,甚至引起致死性肾功能衰竭[11, 12]。难治性LUTD仍是一个国际难题,目前可供选择的药物较少,泌尿系统局部RAS或许有望成为膀胱尿道功能障碍药物治疗的新靶点。

三、RAS与儿童膀胱尿道功能障碍性疾病 (一) RAS参与完成膀胱尿道正常生理功能

正常的膀胱尿道生理功能是排尿动作顺利完成的基础,局部RAS在维持尿道张力和调节逼尿肌收缩两方面可能起着重要作用。Phull等[13]阐述了局部RAS在尿道括约肌中存在的两大证据,一是局部血管紧张素及其前体的存在,二是局部AngⅡ受体的存在及其生物活性表达。在功能上,AngⅡ引起尿道平滑肌收缩,并直接引起近端尿道闭合压升高。动物实验表明,神经源性或肌源性所致的大鼠尿道括约肌功能障碍,可使用AngⅡ帮助暂时恢复其尿道张力,而特异性阻断AT1R可使尿道括约肌松弛而降低尿道张力[13]

膀胱局部也存在RAS,且RAS可对膀胱平滑肌细胞收缩活动进行调节。已有文献报道在动物以及人类的膀胱组织中发现了AngⅡ受体[14, 15]。Weaver等[16]发现膀胱组织内存在ACE,并将AngⅠ转化为AngⅡ。AngⅡ又通过旁分泌或自分泌的方式与邻近平滑肌细胞的AT1R和AT2R相结合, 从而引起膀胱平滑肌收缩,其中AT1R在AngⅡ诱导的逼尿肌收缩中起主导作用, 而AT2R可能发挥抑制作用[13, 17-19]

(二) RAS与下尿路症状(lower urinary tract symptoms, LUTS)

1. ACE-AngⅡ-AT1R轴上调导致LUTS的发生:局部AngⅡ通过结合AT1R,部分参与到LUTD的发病中,引起各种LUTS[15, 18]。有报道称,膀胱上皮和逼尿肌中的AT1R上调与大鼠膀胱出口部分梗阻(partial bladder outlet obstruction, pBOO)模型OAB的发生有关[14]。另外,膀胱局部AT1R的上调还被认为与年龄增长所致储尿期和排尿期症状有关,一方面其可能通过激活细胞外调节蛋白激酶(extracellular regulated protein kinases, ERK)信号通路增加Connexin 43表达,进而导致OAB;另一方面,其可能通过增加Ⅰ型胶原表达导致膀胱排空障碍和膀胱活动不足[14, 19]。越来越多文献显示ACEI和ARBs具有改善膀胱功能的作用。动物研究表明,替米沙坦和络沙坦可抑制膀胱组织AT1R的上调, 从而改善OAB[14, 20]。Aikawa等[17]发现坎地沙坦可提高梗阻膀胱的排尿效率, 延长排尿间隔时间并增加排尿量,显著减少膀胱残余尿量。ACEI和ARBs还可改善人类膀胱的功能,Hideaki等[21]发现接受ARBs治疗的男性高血压患者国际前列腺症状评分明显低于接受其他降压药物治疗的高血压患者;Christopher等[22]通过调查发现,ACEI或ARBs可降低男性急迫性尿失禁(stress urinary incontinence,SUI)的发生率。

RAS抑制剂通过降低尿道阻力,有助于改善尿道过度收缩相关LUTS,但同时也有可能引起或加重SUI。研究表明,使用氯沙坦可抑制去卵巢大鼠尿道组织ACE及AT1R、AT2R等表达的上调,从而缓解尿道过度收缩相关LUTS[13, 23]。而服用ACEI/ARBs可导致人群(尤其是女性群体)SUI发生率的提高,这可能与尿道张力降低相关,另一方面,服用ACEI的患者中有5% ~35%会发生咳嗽,引起腹腔压力增高,也可能导致或加重SUI[22, 24]

2. AT2R及其他活性肽对下尿路症状的影响:AT2R在生理和病理条件下对膀胱和尿道平滑肌的调节作用尚不清楚。有研究表明,AT1R和AT2R在调节逼尿肌收缩过程中可能发挥拮抗作用。Mori[25]报道了AT2R在OAB大鼠逼尿肌中表达增加,Petya等[26]发现AT2R阻滞剂PD 123319显著增加了由AngⅡ引起的逼尿肌收缩反应强度和速度,这均提示膀胱功能障碍中AT1R和AT2R可能存在拮抗性上调,AT2R可能通过激活NO途径抑制AT1R介导的逼尿肌收缩[19, 25, 26]。但是,也有报道称AT2R抑制剂PD123319会显著降低大鼠的尿道阻力[13]。此外,由AngⅡ酶解形成的人血管紧张素活性肽,如血管紧张素Ⅲ、Ⅳ以及Ang(1-7)等对AT2R表现出更强的选择性,作为AT2R的内源性配体,这些证据有助于探讨AT2R或局部形成的AngⅡ代谢物在膀胱尿道功能改善方面的作用[27]

(三) RAS与膀胱纤维化

长期存在的LUTD(如逼尿肌收缩无力、尿道括约肌痉挛)可引起膀胱残余尿量增多、膀胱内压增高等表现,而膀胱内压持续增高被认为是进一步导致膀胱结构和功能破坏的诱因,可引起膀胱平滑肌细胞肥大、结缔组织增生和神经支配减少等病理改变,最终导致膀胱纤维化[28]

1. ACE-AngⅡ-AT1轴:ACE-AngⅡ-AT1轴参与膀胱纤维化的发生、发展局部AngⅡ发挥营养因子的作用,促进膀胱平滑肌细胞生长和胶原生成[29]。类似于在其他器官重塑中的作用,AT1R的激活在膀胱纤维化过程中扮演重要角色,其不仅增加了人肝素结合性表皮生长因子(human proheparin-binding EGF-like growth factor,HB-EGF)的表达,还通过激活ERK1/2信号通路增加Connexin43的表达,最终引起平滑肌细胞肥大和I型胶原沉积等纤维化表现[19, 29, 30]。这表明,AT1R可能是药物治疗膀胱、纤维化的靶点。有文献报道,坎地沙坦可明显降低BOO大鼠膀胱组织中HB-EGF、转化生子因子-β1(Transfer Growth Factor-β1, TGF-β1)和NADPH氧化酶1(NADPH Oxidase 1, NOX1)等纤维化相关细胞因子的mRNA表达水平;卡托普利、氯沙坦和替米沙坦等也可有效减轻pBOO动物膀胱纤维化程度[17, 20, 29]。然而,早期也有报道称,卡托普利和氯沙坦对2~4周pBOO大鼠模型的结构没有明显改善,这可能与模型建立时间较短、梗阻膀胱尚且未发生明显纤维化相关[31, 32]

2. AT2R及ACE2-Ang(1-7)-Mas轴:AT2R的激活可抑制细胞增殖相关信号通路,有利于维持膀胱内稳态,其中最常见的是对丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)的抑制[33]。此外,AT2R还可能激活过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor gamma, PPARγ),通过促进脂联素(adiponectin, APN)的分泌达到抑制膀胱重塑的目的[1934]。研究表明,第二代ARBs(如替米沙坦)也可直接激活PPARγ,这也可能是其抗膀胱重塑的另一途径[35]

ACE2-Ang(1-7)-Mas轴在膀胱纤维化方面的研究尚缺乏,但已有大量研究报告了Ang(1-7)在不同脏器中发挥抗纤维化和抗增殖作用,该作用由Mas介导,并被Mas拮抗剂A-779阻断[36-39]。Ang(1-7)的作用主要通过下调纤维化相关信号通路的分子表达来实现[39]。TGF-β1是目前公认最重要的促纤维化细胞因子,研究表明,Ang(1-7)的使用可以明显降低心肌细胞、肝组织和肺组织中TGF-β1的表达水平,显著缓解纤维化, 而用A-779阻断Mas可增加组织中TGF-β1的水平[36, 38, 40]。除了阻断TGF-β1的合成外,ACE2/Ang(1-7)/Mas轴还可阻断由AngⅡ、内皮素和其他促纤维化分子介导的促纤维化事件。例如,Ang(1-7)通过促进前列环素的释放来激活cAMP依赖性蛋白激酶,或者通过抑制MAPK/ERK信号通路,从而抑制血管平滑肌细胞生长[41, 42]

(四) RAS与肾脏损伤

膀胱排空不完全和膀胱内高压长期存在,可引起膀胱输尿管反流(vesicoureteral reflux,VUR)和肾积水,造成肾脏损伤,主要分为两种类型。

实验性单侧输尿管梗阻(unilateralureteral obstruction, UUO)模型常被用于模拟ON,其很好地阐述了梗阻后肾脏局部RAS的变化[43]。ACE-AngⅡ-AT1R轴在梗阻侧肾脏中往往被过度激活,梗阻导致足细胞损伤,从而增加了肾内AngⅡ水平,而AngⅡ反过来又促进了肾脏损伤,形成恶性循环[44]。AT1R是参与AngⅡ介导梗阻性肾损伤的主要受体。从血流动力学看,Ang Ⅱ(尤其是肾内AngⅡ)通过AT1R直接收缩肾小动脉,从而导致肾血流量(Renal Blood Flow, RBF)和肾小球滤过率(Glomerular Filtration Rate, GFR)下降,诱导肾组织氧化应激、细胞凋亡和炎症反应,促进肾脏损伤[45]。另外,RAS还影响UUO同侧肾脏前列腺素、心房钠尿肽、一氧化氮、腺苷等主要血管扩张因子以及内皮素、加压素等主要血管收缩因子的分泌,从而加重肾脏损伤[46]。从分子层面看,肾内Ang Ⅱ可促进多种促炎、促增殖和促纤维化细胞因子的表达。例如,Ang Ⅱ通过与AT1R结合增加了肾脏中核因子-κB(nuclear factor-κB,NF-κB)、α-平滑肌肌动蛋白(α-smooth muscle actin, α-SMA)和TGF-β1的表达,还引起单核细胞等炎症细胞的浸润,最终引起肾间质纤维化[46-48]。AT1R还可激活caspase-3级联反应,诱导梗阻侧肾脏细胞凋亡[49]。此外,血小板衍生因子、胰岛素样生长因子和人血管内皮细胞粘附分子1等致损伤因子的表达也会随着AT1R的激活而增加[46]

Ito等[50]发现单纯解除梗阻并不能终止肾脏损害,RAS抑制剂的使用可有效延缓梗阻后进展性肾功能丧失。ACEI和ARBs可以降低肾内Ang Ⅱ浓度,恢复梗阻侧肾脏的RBF和GFR,抑制炎症和纤维化相关细胞因子的表达,从而减轻炎症细胞浸润及肾脏纤维化[47, 48, 51]。此外,ARBs还可逆转UUO侧肾脏Na+-K+-ATP酶和水通道蛋白-2的下调,解除内源性AT1R激活所致的集合管泌H+功能抑制[51, 52]

关于AT2R在ON的作用尚存在争议。有学者认为,AT2R激活可减轻梗阻后肾间质胶原纤维的积累。Chow等[54]发现AT2R基因敲除UUO小鼠的肾间质纤维化更严重。但是,Esteban等[47]发现AT2R在UUO大鼠肾脏中的表达上调,只有同时阻断AT1R和AT2R才能抑制UUO侧肾脏中巨噬细胞的浸润,作者认为AT2R参与UUO引起的肾脏损伤,至少在炎症细胞募集方面发挥重要作用。

ACE2-Ang(1-7)-Mas轴可能在ON中发挥保护作用。已有研究表明,Ang(1-7)可降低UUO同侧的肾血管阻力并提高其RBF,并通过下调AT1R的表达来抑制肾脏TGF-β1/Smad信号通路,进而减轻炎症细胞浸润、细胞凋亡、纤维化等损伤,而使用Mas受体拮抗剂A-779治疗则会加重UUO侧肾脏损伤及纤维化程度[55-57]。另外,肾脏ACE2升高也可降低NF-κB和TGF-β1/Smad信号通路表达[58, 59]。然而,Esteban和Zimmerman等[57, 60]发现外源性高剂量Ang(1-7)治疗进一步加重了Mas基因敲除小鼠UUO侧肾脏的炎症反应和纤维化,Zimmerman等[60]还发现Mas拮抗剂A-779加重正常小鼠UUO梗阻侧肾脏损伤,故其认为Ang(1-7)的功能可能存在剂量依赖性,内源性(低剂量)Ang(1-7)对UUO的肾脏损伤有保护作用,外源性高剂量Ang(1-7)则可加重肾脏损伤,这表明Ang(1-7)在肾脏局部可能同时存在Mas以外的受体。

长期存在的VUR和UTI可导致RN,部分患者最终演进为终末期肾病。如何尽早确定RN的发生是小儿泌尿外科医生最关心的问题,血浆肾素活性(plasma renin activity, PRA)与进行性肾脏损害密切相关,可作为判断VUR患者(特别是低级别VUR患者)是否需要接受外科治疗及疗效评价的可靠指标,PRA水平升高提示VUR存在复发的可能[61]。作为治疗RN合并高血压和(或)蛋白尿患者的首选药物,RAS抑制剂可有效控制血压并减少尿蛋白[62]。除此之外,ACEI还可以降低PRA水平并提高RN肾脏的GFR及分肾功能。关于肾脏局部RAS与RN的研究目前较为缺乏,有报道称,AT1R以及AT2R在人RN肾脏中的表达增加,但其与RN的关系仍有待进一步研究。

综上所述,ACE-AngⅡ-AT1R轴在膀胱尿道功能障碍及其引起的膀胱和肾脏损害作用已得到证实,AT1R有望成为儿童膀胱尿道疾病及相关脏器并发症药物治疗的新靶点,大部分观点认为ACEI、ARBs通过拮抗AT1R的作用改善下尿路功能并对膀胱和肾脏起保护作用,关于AT2R和ACE2-Ang(1-7)-Mas轴在膀胱尿道功能障碍相关病理变化尤其是膀胱重塑的具体作用还需要进一步研究。

参考文献
[1]
Passos-Silva DG, Brandan E, Santos RA. Angiotensins as therapeutic targets beyond heart disease[J]. Trends Pharmacol Sci, 2015, 36(5): 310-320. DOI:10.1016/j.tips.2015.03.001
[2]
Santos RA, Brosnihan KB, Chappell MC, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem[J]. Hypertension, 1988, 11(2 Pt 2): 153-157. DOI:10.1161/01.hyp.11.2_pt_2.i153
[3]
Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin-converting enzyme.Cloning and functional expression as a captopril-insensitive carboxypeptidase[J]. J Biol Chem, 2000, 275(43): 33238-33243. DOI:10.1074/jbc.M002615200
[4]
Santos RA, Simoes E Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the g protein-coupled receptor mas[J]. Proc Natl Acad Sci USA, 2003, 100(14): 8258-8263. DOI:10.1073/pnas.1432869100
[5]
Britto RR, Santos RA, Fagundes-Moura CR, et al. Role of angiotensin-(1-7) in the modulation of the baroreflex in renovascular hypertensive rats[J]. Hypertension, 1997, 30(3 Pt 2): 549-556. DOI:10.1161/01.hyp.30.3.549
[6]
Ebermann L, Spillmann F, Sidiropoulos M, et al. The angiotensin-(1-7) receptor agonist ave0991 is cardioprotective in diabetic rats[J]. Eur J Pharmacol, 2008, 590(1-3): 276-280. DOI:10.1016/j.ejphar.2008.05.024
[7]
Santos RAS, Sampaio WO, Alzamora AC, et al. The ace2/angiotensin-(1-7)/mas axis of the renin-angiotensin system: Focus on angiotensin-(1-7)[J]. Physiol Rev, 2018, 98(1): 505-553. DOI:10.1152/physrev.00023.2016
[8]
Patel VB, Lezutekong JN, Chen X, et al. Recombinant human ace2 and the angiotensin 1-7 axis as potential new therapies for heart failure[J]. Can J Cardiol, 2017, 33(7): 943-946. DOI:10.1016/j.cjca.2016.12.012
[9]
Sukumaran V, Veeraveedu PT, Gurusamy N, et al. Telmisartan acts through the modulation of ace-2/ang 1-7/mas receptor in rats with dilated cardiomyopathy induced by experimental autoimmune myocarditis[J]. Life Sci, 2012, 90(7-8): 289-300. DOI:10.1016/j.lfs.2011.11.018
[10]
Sureshkumar P, Jones M, Cumming R, et al. A population based study of 2, 856 school-age children with urinary incontinence[J]. J Urol, 2009, 181(2): 808-815. DOI:10.1016/j.juro.2008.10.044
[11]
Fuentes M, Magalhães J, Barroso U Jr. Diagnosis and management of bladder dysfunction in neurologically normal children[J]. Front Pediatr, 2019, 7: 298. DOI:10.3389/fped.2019.00298
[12]
Stein R, Bogaert G, Dogan HS, et al. Eau/espu guidelines on the management of neurogenic bladder in children and adolescent part i diagnostics and conservative treatment[J]. Neurourol Urodyn, 2020, 39(1): 45-57. DOI:10.1002/nau.24211
[13]
Phull H, Salkini M, Escobar C, et al. The role of angiotensin ii in stress urinary incontinence: A rat model[J]. Neurourol Urodyn, 2007, 26(1): 81-88, 89. DOI:10.1002/nau.20339
[14]
Cho ST, Park EY, Kim JC. Effect of angiotensin ii receptor antagonist telmisartan on detrusor overactivity in rats with bladder outlet obstruction[J]. Urology, 2012, 80(5): 1163.e1-e7. DOI:10.1016/j.urology.2012.05.002
[15]
Lam DS, Dias LS, Moore KH, et al. Angiotensin ii in child urinary bladder: Functional and autoradiographic studies[J]. BJU Int, 2000, 86(4): 494-501. DOI:10.1046/j.1464-410x.2000.00771.x
[16]
Weaver-Osterholtz D, Reams G, De Vergel CF, et al. The bladder angiotensin system in female rats: Response to infusions of angiotensin i and the angiotensin converting enzyme inhibitor enalaprilat[J]. J Urol, 2001, 165(5): 1735-1738. DOI:10.1016/S0022-5347(05)66404-X
[17]
Aikawa K, Sakai T, Ishibashi K, et al. Involvement of angiotensin ii type 1 receptor on pathological remodeling and dysfunction in obstructed bladder[J]. Int J Urol, 2012, 19(5): 457-464. DOI:10.1111/j.1442-2042.2012.02965.x
[18]
Tanabe N, Ueno A, Tsujimoto G. Angiotensin ii receptors in the rat urinary bladder smooth muscle: Type 1 subtype receptors mediate contractile responses[J]. J Urol, 1993, 150(3): 1056-1059. DOI:10.1080/13813455.2018.1555669
[19]
Mori K, Noguchi M, Tobu S, et al. Age-related changes in bladder function with altered angiotensin ii receptor mechanisms in rats[J]. Neurourol Urodyn, 2016, 35(8): 908-913. DOI:10.1002/nau.22849
[20]
Comiter C, Phull HS. Angiotensin ii type 1 (at-1) receptor inhibition partially prevents the urodynamic and detrusor changes associated with bladder outlet obstruction: A mouse model[J]. BJU Int, 2012, 109(12): 1841-1846. DOI:10.1111/j.1464-410X.2011.10580.x
[21]
Ito H, Taga M, Tsuchiyama K, et al. Ipss is lower in hypertensive patients treated with angiotensin-ii receptor blocker: Posthoc analyses of a lower urinary tract symptoms population[J]. Neurourol Urodyn, 2013, 32(1): 70-74. DOI:10.1002/nau.22267
[22]
Elliott CS, Comiter CV. The effect of angiotensin inhibition on urinary incontinence: Data from the national health and nutrition examination survey (2001-2008)[J]. Neurourol Urodyn, 2014, 33(8): 1178-1181. DOI:10.1002/nau.22480
[23]
Ramos-Filho AC, A Faria J, Calmasini FB, et al. The renin-angiotensin system plays a major role in voiding dysfunction of ovariectomized rats[J]. Life Sci, 2013, 93(22): 820-829. DOI:10.1016/j.lfs.2013.09.008
[24]
Casanova JE. Incontinence after use of enalapril[J]. J Urol, 1990, 143(6): 1237-1238. DOI:10.1016/s0022-5347(17)40240-0
[25]
Hadzhibozheva P, Tolekova A, Kalfin R, et al. Analysis of angiotensin ii-induced rat urinary bladder contractions in the presence of angiotensin ii receptors blockers[J]. Arch Physiol Biochem, 2021, 127(1): 1-5. DOI:10.1080/13813455.2018.1555669
[26]
Kristek F, Malekova M, Ondrias K, et al. Blood pressure-independent hypotrophy of the heart, kidneys and conduit arteries after 7-nitroindazole administration to wistar rats from the prenatal period to adulthood[J]. J Physiol Pharmacol, 2013, 64(1): 35-39.
[27]
Bosnyak S, Jones ES, Christopoulos A, et al. Relative affinity of angiotensin peptides and novel ligands at at1 and at2 receptors[J]. Clin Sci (Lond), 2011, 121(7): 297-303. DOI:10.1042/CS20110036
[28]
Fusco F, Creta M, De Nunzio C, et al. Progressive bladder remodeling due to bladder outlet obstruction: A systematic review of morphological and molecular evidences in humans[J]. BMC Urology, 2018, 18(1): 15. DOI:10.1186/s12894-018-0329-4
[29]
Yamada S, Takeuchi C, Oyunzul L, et al. Bladder angiotensin-ii receptors: Characterization and alteration in bladder outlet obstruction[J]. Eur Urol, 2009, 55(2): 482-489. DOI:10.1016/j.eururo.2008.03.015
[30]
Park JM, Borer JG, Freeman MR, et al. Stretch activates heparin-binding egf-like growth factor expression in bladder smooth muscle cells[J]. Am J Physiol, 1998, 275(5): C1247-C1254. DOI:10.1152/ajpcell.1998.275.5.C1247
[31]
Palmer LS, Lee C, Decker RS, et al. The effect of angiotensin converting enzyme inhibition and angiotensin ii receptor antagonism on obstructed rat bladder[J]. J Urol, 1997, 158(3 Pt 2): 1100-1104. DOI:10.1097/00005392-199709000-00105
[32]
Persson K, Pandita RK, Waldeck K, et al. Angiotensin ii and bladder obstruction in the rat: Influence on hypertrophic growth and contractility[J]. Am J Physiol, 1996, 271(5 Pt 2): R1186-R1192. DOI:10.1152/ajpregu.1996.271.5.R1186
[33]
Bedecs K, Elbaz N, Sutren M, et al. Angiotensin ii type 2 receptors mediate inhibition of mitogen-activated protein kinase cascade and functional activation of shp-1 tyrosine phosphatase[J]. Biochem J, 1997, 325(Pt 2): 449-454. DOI:10.1042/bj3250449
[34]
Kaschina E, Lauer D, Schmerler P, et al. At2 receptors targeting cardiac protection post-myocardial infarction[J]. Curr Hypertens Rep, 2014, 16(7): 441. DOI:10.1007/s11906-014-0441-0
[35]
Maejima Y, Okada H, Haraguchi G, et al. Telmisartan, a unique arb, improves left ventricular remodeling of infarcted heart by activating ppar gamma[J]. Lab Invest, 2011, 91(6): 932-944. DOI:10.1038/labinvest.2011.45
[36]
Pereira RM, Dos Santos RA, Teixeira MM, et al. The renin-angiotensin system in a rat model of hepatic fibrosis: Evidence for a protective role of angiotensin-(1-7)[J]. J Hepatol, 2007, 46(4): 675-681. DOI:10.1016/j.jhep.2006.10.018
[37]
Simões E Silva AC, Teixeira MM. ACE inhibition, ace2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis[J]. Pharmacol Res, 2016, 107: 154-162.
[38]
Cao Y, Liu Y, Shang J, et al. Ang-(1-7) treatment attenuates lipopolysaccharide-induced early pulmonary fibrosis[J]. Lab Invest, 2019, 99(12): 1770-1783. DOI:10.1038/s41374-019-0289-7
[39]
Simões E Silva AC, Silveira KD, Ferreira AJ, et al. Ace2, angiotensin-(1-7) and mas receptor axis in inflammation and fibrosis[J]. Br J Pharmacol, 2013, 169(3): 477-492. DOI:10.1111/bph.12159
[40]
Grobe JL, Mecca AP, Lingis M, et al. Prevention of angiotensin ii-induced cardiac remodeling by angiotensin-(1-7)[J]. Am J Physiol Heart Circ Physiol, 2007, 292(2): H736-H742. DOI:10.1152/ajpheart.00937.2006
[41]
Tallant EA, Clark MA. Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7)[J]. Hypertension, 2003, 42(4): 574-579. DOI:10.1161/01.HYP.0000090322.55782.30
[42]
Zhang F, Ren X, Zhao M, et al. Angiotensin-(1-7) abrogates angiotensin ii-induced proliferation, migration and inflammation in vsmcs through inactivation of ros-mediated pi3k/akt and mapk/erk signaling pathways[J]. Sci Rep, 2016, 6: 34621. DOI:10.1038/srep34621
[43]
Martínez-Klimova E, Aparicio-Trejo OE, Tapia E, et al. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments[J]. Biomolecules, 2019, 9(4): 141. DOI:10.3390/biom9040141
[44]
Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis[J]. Am J Physiol Renal Physiol, 2002, 283(5): F861-F875. DOI:10.1152/ajprenal.00362.2001
[45]
Felsen D, Schulsinger D, Gross SS, et al. Renal hemodynamic and ureteral pressure changes in response to ureteral obstruction: The role of nitric oxide[J]. J Urol, 2003, 169(1): 373-376. DOI:10.1097/01.ju.0000039820.60560.74
[46]
Hassanshahi J, Maleki M, Nematbakhsh M. Renin-angiotensin system and unilateral ureteral obstruction[J]. Physiol Pharmacol, 2018, 21.
[47]
Esteban V, Lorenzo O, Rupérez M, et al. Angiotensin ii, via at1 and at2 receptors and nf-kappab pathway, regulates the inflammatory response in unilateral ureteral obstruction[J]. J Am Soc Nephrol, 2004, 15(6): 1514-1529. DOI:10.1097/01.asn.0000130564.75008.f5
[48]
Burns WC, Velkoska E, Dean R, et al. Angiotensin ii mediates epithelial-to-mesenchymal transformation in tubular cells by ang 1-7/mas-1-dependent pathways[J]. Am J Physiol Renal Physiol, 2010, 299(3): F585-F593. DOI:10.1152/ajprenal.00538.2009
[49]
Bhaskaran M, Reddy K, Radhakrishanan N, et al. Angiotensin ii induces apoptosis in renal proximal tubular cells[J]. Am J Physiol Renal Physiol, 2003, 284(5): F955-F965. DOI:10.1152/ajprenal.00246.2002
[50]
Ito K, Chen J, El Chaar M, et al. Renal damage progresses despite improvement of renal function after relief of unilateral ureteral obstruction in adult rats[J]. Am J Physiol Renal Physiol, 2004, 287(6): F1283-F1293. DOI:10.1152/ajprenal.00441.2003
[51]
Topcu SO, Pedersen M, Nørregaard R, et al. Candesartan prevents long-term impairment of renal function in response to neonatal partial unilateral ureteral obstruction[J]. Am J Physiol Renal Physiol, 2007, 292(2): F736-F748. DOI:10.1152/ajprenal.00441.2003
[52]
Gheitasi I, Moosavi SM. Combination therapy with losartan and α-tocopherol in acute ureteral obstruction-induced renal excretory dysfunction and acidification defect[J]. Iran J Med Sci, 2014, 39(4): 357-366.
[53]
Zhong J, Guo D, Chen CB, et al. Prevention of angiotensin ii-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2[J]. Hypertension, 2011, 57(2): 314-322. DOI:10.1161/HYPERTENSIONAHA.110.164244
[54]
Chow BS, Kocan M, Bosnyak S, et al. Relaxin requires the angiotensin ii type 2 receptor to abrogate renal interstitial fibrosis[J]. Kidney Int, 2014, 86(1): 75-85. DOI:10.1038/ki.2013.518
[55]
Hassanshahi J, Nematbakhsh M. The role of mas receptor on renal hemodynamic responses to angiotensin 1-7 in both irreversible and reversible unilateral ureteral obstruction rats[J]. Adv Biomed Res, 2018, 7: 12. DOI:10.4103/abr.abr_176_17
[56]
Kim CS, Kim IJ, Bae EH, et al. Angiotensin-(1-7) attenuates kidney injury due to obstructive nephropathy in rats[J]. PLoS One, 2015, 10(11): e0142664. DOI:10.1371/journal.pone.0142664
[57]
Zimmerman DL, Zimpelmann J, Xiao F, et al. The effect of angiotensin-(1-7) in mouse unilateral ureteral obstruction[J]. Am J Pathol, 2015, 185(3): 729-740. DOI:10.1016/j.ajpath.2014.11.013
[58]
Chappel MC, Ferrario CM. Ace and ace2:Their role to balance the expression of angiotensin ii and angiotensin-(1-7)[J]. Kidney Int, 2006, 70(1): 8-10. DOI:10.1038/sj.ki.5000321
[59]
Liu Z, Huang XR, Chen HY, et al. Loss of angiotensin-converting enzyme 2 enhances tgf-β/smad-mediated renal fibrosis and nf-κb-driven renal inflammation in a mouse model of obstructive nephropathy[J]. Lab Invest, 2012, 92(5): 650-661. DOI:10.1038/labinvest.2012.2
[60]
Esteban V, Heringer-Walther S, Sterner-Kock A, et al. Angiotensin-(1-7) and the g protein-coupled receptor mas are key players in renal inflammation[J]. PLoS One, 2009, 4(4): e5406. DOI:10.1371/journal.pone.0005406
[61]
Verma A, Panda SS, Bajpai M. Role of endoscopic treatment of vesico-ureteric reflux in downgrading renin angiotensin system activation[J]. J Pediatr Urol, 2014, 10(2): 386-390. DOI:10.1016/j.jpurol.2013.10.015
[62]
Mattoo TK. Medical management of vesicoureteral reflux-quiz within the article.Don't overlook placebos[J]. Pediatr Nephrol, 2007, 22(8): 1113-1120. DOI:10.1007/s00467-007-0485-3