肝母细胞瘤(hepatoblastoma,HB)是常见的儿童恶性肿瘤,发病率约0.4/100 000,发病群体主要局限于15岁以下儿童,以3岁以下儿童多见,成人相对罕见[1, 2],1958—2016年英文文献报告的成人病例仅47例[3]。常发于肝右叶,易向肺部、骨髓转移,无特异性临床表现,表现为腹痛、发热、贫血、食欲减退等,多数患儿确诊时已进入晚期。目前HB传统诊治方案在我国已达成一定共识,包括手术切除(目前主流的治疗手段)、自体或异体肝移植、化学治疗(如新辅助治疗)、介入治疗等。由于受到交叉学科(如医学影像学、分子生物学)发展的影响,肝母细胞瘤的治疗方法也取得长足进展(包括靶向通路的发现与临床试验等)。本文将从两个方面(临床主流治疗方法的新进展、实验室靶点或通路的新发现)对肝母细胞瘤的治疗进展进行综述。
一、临床主流治疗方法肝母细胞瘤的手术、肝移植、放化疗、介入等治疗手段已趋于成熟,在临床上应用较广,我国抗癌协会小儿肿瘤专业委员会于2017年更新出台了《儿童肝母细胞瘤多学科诊疗专家共识》[4],重新规范了我国目前主流的临床诊治标准及治疗方案,供临床医生参考。
(一) 手术治疗1.手术切除:对于未发生转移、较为局限的HB,最理想的治疗方式是手术切除。病灶切除的完整性对于后续患者病情起决定作用。通常行阴性边缘切除术,但阳性边缘切除对于患儿生存率的负面影响未经证实[5]。
转移性肿瘤可通过吲哚菁绿(indocyanine green,ICG)成像技术进行精准切除。目前,有关ICG应用于肝母细胞瘤的报告较少,ICG的注射剂量与时间尚未规范[6]。ICG在近红外模式下可视,临床手术需通过正常白光模式和近红外模式之间的频繁切换来观察成像,由于PINPOINT内窥镜荧光成像系统在白光模式和近红外模式之间具有相同的焦距,故可实时叠加二者,令摄取ICG的转移性HB区域转化为在高清白光图像上的绿色区域,使实时手术成为可能[7]。为优化手术环境,投影映射方法也在一些肺转移的肝母细胞瘤病例中得到应用,在开胸手术中可将计算机断层摄影扫描生成的携带有ICG的病变区域的图像投射到目标器官上,此项医学成像投影系统(medical imaging projection system,MIPS)在光亮环境下也可检测出ICG荧光,从而避免了常规ICG荧光手术时的暗环境[8]。
2.肝移植:肝移植是手术治疗的一部分,对于晚期难治性或不可切除的HB(如新辅助化疗后被评估为PRETEXT Ⅲ期或Ⅳ期、伴血管受累等情况),肝移植或是最好的选择。一期肝移植的远期疗效较好,经联合治疗,肝移植长期生存率约为80%[9, 10]。Shu等[11]曾成功实施针对HB患儿的自体肝移植手术(autologous liver transportation,ALT),通过离体或半离体切除肝脏病灶,将剩余肝进行移植,吻合上下腔静脉、胆管等管道系统,再次恢复肝脏血供[12]。相比于异体肝移植,ALT避免了肝脏资源稀缺、排异反应等问题,但因手术难度大,自体肝移植应用范围相对较小;此外,对于儿童来说,术中涤纶合成血管无法适应其发育趋势,需寻找管腔较大的静脉(如髂静脉等)等同种移植物完成腔静脉的重建[13, 14]。关于肝移植的时间选择,Kaori等[15]认为,当AFP水平在最后一个化疗周期结束后没有降低,且没有再次升高之前,可进行肝移植手术。
3.化学治疗:根据《儿童肝母细胞瘤多学科诊疗专家共识》,将HB患者按病情缓急分为四组(极低危组、低危组、中危组、高危组),给药方案不尽相同,需结合患儿指标及时调整。顺铂(Cisplatin,DDP)为HB主要化疗药物,通常与长春新碱(Vincristine Oncovin,VCR)、5-氟尿嘧啶(5-Fluorouracil,5-FU)、异环磷酰胺(Palifosfamide,Ifos)、蒽环类药物阿霉素(Doxorubincin,DOXO)等联合使用,一般C5V(DDP+5-FU+VCR)方案应用于HB低危组,C5VD(DDP+5-FU+VCR+DOXO)方案应用于HB中危组,C-CD+ICE方案应用于HB高危组(包含新辅助化疗)[4]。C5V方案通常作为一线临床用药方案[16, 17]。也有作者认为可尝试Ⅵ(VCR+伊立替康I)方案[18],伊立替康为拓扑异构酶Ⅰ抑制剂,具有抗肿瘤活性,对高风险HB患儿具有一定帮助。尽管通常采取联合治疗手段,但顺铂可作为单剂药治疗肝母细胞瘤,单剂顺铂能有效缩小瘤体,且心脏毒性等副作用低于联合用药[19]。另外,由于铂类药物(如顺铂、卡铂等)具有耳毒性、肾毒性,有作者提议可将累积顺铂剂量和单次最大顺铂剂量作为预测因子,推测患儿听力受损程度,对于其诱发的耳毒性,有证据表明顺铂化疗后6 h给予硫代硫酸钠治疗可有效降低顺铂耳毒性发生率[20, 21]。近期,顺铂被证明可在APC(adenomatous polyposis coli)生殖系突变肝母细胞瘤(APC-HB)中与APC失活共同诱导免疫原性细胞死亡,诱发抗肿瘤的免疫应答[22]。此外,顺铂已被证实与多种新型抑制剂起协同作用(如组蛋白脱乙酰酶抑制剂SAHA等)[23]。
除以上经典化疗用药外,新型化疗药物也正在研发之中。有研究报道,人参皂苷Rg1可将HB中过表达的CtlP基因作为靶向候选基因,该基因编码HB修复机制中的核心蛋白,Rg1下调该基因表达,从而降低HB修复效率;Rg1可与DNA损伤剂(如HU等)起协同作用[24]。
4.介入治疗:介入治疗通常分为介入化疗、介入放疗以及经导管皮下消融术等。经导管动脉化疗栓塞术(transarterial chemoembolization,TACE)一般在经导管动脉栓塞术(transcatheter arterial embolization,TAE)基础上给予一定化疗药物(通常为顺铂或多柔比星),诱导肿瘤细胞的凋亡。TACE除潜在医源性伤害外,可能存在一过性肝功能伤害[25]。经动脉放射性栓塞是指经肝动脉将放射性钇-90玻璃或树脂微球运输至肿瘤部位,使得肿瘤经放射性治疗而达到体积减小的一种方式[26]。由于恶性肿瘤一般以肝动脉作为营养血管,而肝脏从门静脉接受大部分血液,故对正常肝脏损害较小[27]。经导管皮下消融术包括射频消融(radio-frequency ablation,RFA)、酒精注射、微波消融(microwave ablation,MWA)等,由穿刺针进入靶向部位,通过调节声波强度或酒精量等对肿瘤进行消融灭活操作,该操作风险较小,有报道称与手术切除相比RFA死亡率更低,仅0% ~1.4%[28]。TACE与MWA相联合,可有效治疗不可切除肿瘤。
二、肝母细胞瘤相关分子机制研究进展随肿瘤相关蛋白和通路的发现,对于难治性HB,当传统手术与放化疗等方案无效时,可考虑应用针对特定靶标的抑制剂进行精准治疗。可受抑制的靶点包括传统的肿瘤发生相关通路以及参与免疫应答的蛋白分子等,下文将从经典靶向通路及靶向免疫疗法两方面,对几项热点靶向研究进行介绍。
(一) 经典靶向通路目前针对HB的经典靶向信号通路及靶点的研究包括PI3K/Akt、Wnt/β-cantenin等。与非特异性靶点的化疗药物相比,靶向药物特异性强,不易脱靶,对正常细胞杀伤小,是理想、有效的治疗手段。
1. PI3K/Akt通路:磷脂酰肌醇3-激酶(Phosphatidylinositol3-kinase,PI3K)及其下游靶蛋白丝氨酸苏氨酸激酶(Serine-Threonine Kinase, Akt)共同构成PI3K/Akt通路,该通路由IGF-1、EGF等因子激活后,通过磷酸化下游的靶标,抑制细胞凋亡[29]。PI3K、Akt等在HB中特异性高表达,标志着PI3K/Akt通路在HB中的出现[29]。
当直接靶向抑制参与该信号通路的蛋白时,可有效控制HB的扩散及转移,经典靶向药物包括PI3K抑制剂LY294002、mTOR抑制剂雷帕霉素和MLN0128等。Laura等曾利用HB小鼠模型观察mTOR抑制剂雷帕霉素的治疗效果,发现雷帕霉素能较明显减轻小鼠肝肿瘤负荷[29-31]。而中草药重楼皂苷[32](Polyphyllin Ⅶ,PP7)也被发现能够抑制mTOR磷酸化,促进自噬过程,诱导HepG2细胞凋亡,可作为mTOR抑制剂的一种。这些mTOR抑制剂常与索拉非尼联合应用,索拉非尼是多种酪氨酸激酶抑制剂,可与miRNA-378a共同增强肿瘤细胞的G1期阻滞和抗侵袭能力[33]。对PI3K/Akt通路关键激酶Akt来说,抑制Akt磷酸化能够有效阻断该通路的传导,抑制性药物包括蒽醌衍生物大黄素、多发性硬化症免疫调节剂FTY720、广谱抗生素呋喃唑酮等[34-36]。经动物实验发现,免疫抑制剂FTY720与顺铂联用能有效减少HB细胞的活力,诱导细胞的凋亡,这可能为今后的临床治疗提供一定思路[35]。
2. Wnt/β-连环蛋白途径:Wnt/β-连环蛋白途径是目前较为明确的HB诱发机制之一。健康肝脏中因缺少细胞外Wnt配体,β-连环蛋白被破坏复合物和靶向蛋白酶体降解,呈无活性;而恶性肿瘤中由于APC等基因功能丧失或相斥基因CTNNB1基因的突变(76% ~80%HB携带有CTNNB1基因3号外显子突变或丢失),致使Wnt配体存在,从而增加了肝母细胞瘤发生的敏感性[37, 38]。
β-连环蛋白是HB治疗的重要靶点。Indersie等[38]通过建立HB相关的miRNA库,筛选出9种miRNA,发现miR-624-5P、let-7i-3p、miR-885-5p等可通过抑制β-连环蛋白表达,灭活Wnt途径,延长G0/G1期并缩短S期,抑制体外肿瘤细胞的增殖;其中miR-624-5P抑制剂最有效,可结合β-连环蛋白3'-UTR,靶向3个mRNA变体,作为miRNA替代疗法的首选。连环蛋白抑制剂包括塞来昔布(释放β-连环蛋白至细胞质,发生磷酸化)、ICG001(结合CBP阻碍β-连环蛋白转录)、R-Etodolac等,顺铂与这些抑制剂联合后可导致HuH6细胞活力减弱[39]。另外黄酮类药物(如epigallocatechin gallate,EGCG)可通过下调Wnt靶基因如MYC、CCND1等,对HB细胞产生细胞毒性[40]。
3.神经激肽受体1(neurokinin receptor, NK1R):SP/NK1R系统在恶性肿瘤中起重要作用,物质P(Substance P, SP)广泛分布在中枢及周围神经系统中[41]。肿瘤细胞可自我刺激生成物质P,SP特异性结合神经激肽受体1(neurokinin receptor, NK1R)后,可促进肿瘤细胞增殖、血管形成、细胞迁移,发挥抗细胞凋亡作用,已证实在乳腺癌等肿瘤中过表达。2015年,Michael等[42]首次发现人HB细胞系HuU6、HepG2中过表达截短形式的NK1R(truncated neurokinin-1 receptor,NK1R-tr),利用NK1R拮抗剂阿瑞吡坦、L-733, 060和L-732, 138等靶向抑制HB细胞,呈明显抑制效果,可诱导细胞凋亡,且这类抑制剂可与化疗药物多柔比星等起协同作用。Matthias等[43]揭示了NK1R拮抗剂在分子水平上的调控作用,他们利用阿瑞匹坦处理HB细胞系,发现抑制NK1R能下调Wnt信号途径,降低Wnt通路相关蛋白和β-连环蛋白相互作用因子FOXM1的表达,从而破坏FOXM1和β-连环蛋白的相互作用[44]。SP/NK1R复合物及其分子机制可作为今后HB新型的治疗靶点,NK1R拮抗剂促进细胞凋亡,起到抗增殖作用;临床用药阿瑞吡坦作为治疗化疗后呕吐的药物之一,今后可尝试用于HB的靶向治疗中。
(二) 靶向免疫疗法免疫疗法可作为靶向治疗的一个分支,通常靶向于机体对肿瘤的免疫调控过程,纠正免疫逃逸的发生,具有较高普适性。对于手术及化疗后复发的难治性HB或耐药性HB,免疫疗法可能能够诱发针对HB肿瘤细胞的免疫应答,从而抑制HB的发展。
1.上皮细胞黏附/活化分子(epithelialcell adhesionmolecule,EpCAM):上皮细胞粘附/活化分子(EpCAM/CD326)为Ⅰ型膜蛋白,为免疫治疗的潜在靶标之一,有研究表明70% ~80%的HB上皮肿瘤区域100%表达EpCAM[45]。目前,有关胃癌、小细胞肺癌的EpCAM的靶向抗体如Catumaxomab、IGN-101已进入临床试验[45]。Sorin等认为抗EpCAM的双特异性抗体MT110可同时结合EpCAM和CD3,促进γδT细胞裂解HB肿瘤细胞,阻碍肿瘤发育[46]。
2.磷脂酰肌醇蛋白聚糖3(Glypican-3,GPC3):GPC3为细胞表面的一种癌胚蛋白,常在小儿恶性实体肿瘤过表达,97%的肝母细胞瘤中上调GPC3[47]。GPC3通过激活Wnt/β-连环蛋白途径来诱导肿瘤细胞生长,并抑制细胞分化[47]。
日本研究组曾对GPC3衍生肽疫苗进行临床试验,利用HLA-A*24 : 02限制性GPC3298-306肽(EYILSLEEL)和HLA-A*02 : 01限制性GPC3144-152肽(FVGEFFTDV)对过表达GPC3的HB肿瘤患儿进行一期临床试验,发现该疫苗可诱导GPC3特异性CTL应答,细胞毒性T淋巴细胞能够浸润整个HB肿瘤组织[48]。此外,单克隆抗体免疫疗法如GC33(GPC3单克隆抗体)在针对HCC的一期试验中已被证实对GPC3阳性肿瘤起抗肿瘤效应[49],今后可能应用于肝母细胞瘤的治疗。
三、展望肝母细胞瘤是儿童最常见的肝脏恶性肿瘤,临床症状呈非特异性,通常按照PRETEXT分期选取治疗方案。目前以手术切除为主,C5V方案可作为一线化疗手段,靶向治疗如NK1R抑制剂、mTOR抑制剂、β-连环蛋白抑制剂等以及针对GPC3的免疫治疗可能是今后HB的重点研究方向。
1 |
Sunil BJ, Palaniappan R, Venkitaraman B, et al. Surgical Resection for Hepatoblastoma-Updated Survival Outcomes[J]. J Gastrointest Cancer, 2018, 49(4): 493-496. DOI:10.1007/s12029-017-0005-z. |
2 |
Allan BJ, Parikh PP, Diaz S, et al. Predictors of survival and incidence of hepatoblastoma in the paediatric population[J]. HPB (Oxford), 2013, 15(10): 741-746. DOI:10.1111/hpb.12112. |
3 |
Duan XF, Zhao Q. Adult hepatoblastoma:a review of 47 cases[J]. ANZ J Surg, 2018, 88(1-2): E50-e54. DOI:10.1111/ans.13839. |
4 |
中国抗癌协会小儿肿瘤专业委员会, 中华医学会小儿外科分会肿瘤专业组. 儿童肝母细胞瘤多学科诊疗专家共识(CCCG-HB-2016)[J]. 中华小儿外科杂志, 2017, 38(10): 733-739. DOI:10.3760/cma.j.issn.0253-3006.2017.10.003. Chinese Anti-Cancer Association Pediatric Committee, China Mdical Association Pediatric Onco-surgrey Group. Expert Consensus for Multidiscciplinary Management of Hepatoblastoma(CCCG-HB-2016)[J]. Chin J Pediatr Surg, 2017, 38(10): 733-739. DOI:10.3760/cma.j.issn.0253-3006.2017.10.003. |
5 |
Fonseca A, Gupta A, Shaikh F, et al. Extreme hepatic resections for the treatment of advanced hepatoblastoma:Are planned close margins an acceptable approach?[J]. Pediatr blood cancer, 2018, 65(2): e26820. DOI:10.1002/pbc.26820. |
6 |
Souzaki R, Kawakubo N, Matsuura T, et al. Navigation surgery using indocyanine green fluorescent imaging for hepatoblastoma patients[J]. Pediatr Surg Int, 2019, 35(5): 551-557. DOI:10.1007/s00383-019-04458-5. |
7 |
Yamada Y, Hoshino K, Mori T, et al. Metastasectomy of Hepatoblastoma Utilizing a Novel Overlay Fluorescence Imaging System[J]. J Laparoendosc Adv Surg Tech A, 2018, 28(9): 1152-1155. DOI:10.1089/lap.2017.0735. |
8 |
Yamamichi T, Oue T, Yonekura T, et al. Clinical application of indocyanine green (ICG) fluorescent imaging of hepatoblastoma[J]. Journal of pediatric surgery, 2015, 50(5): 833-836. DOI:10.1016/j.jpedsurg.2015.01.014. |
9 |
Ramos-Gonzalez G, Laquaglia M, O'Neill AF, et al. Long-term outcomes of liver transplantation for hepatoblastoma:A single-center 14-year experience[J]. Pediatric transplantation, 2018, e13250. DOI:10.1111/petr.13250. |
10 |
Fuchs J, Cavdar S, Blumenstock G, et al. POST-TEXT Ⅲ and Ⅳ Hepatoblastoma:Extended Hepatic Resection Avoids Liver Transplantation in Selected Cases[J]. Annals of surgery, 2017, 266(2): 318-323. DOI:10.1097/sla.0000000000001936. |
11 |
Shi SJ, Wang DL, Hu W, et al. Ex vivo liver resection and autotransplantation with cardiopulmonary bypass for hepatoblastoma in children:A case report[J]. Pediatric transplantation, 2018, 22(7): e13268. DOI:10.1111/petr.13268. |
12 |
张明满, 宁禹, 李英存, 等. 自体肝移植治疗婴幼儿复杂肝母细胞瘤一例及文献复习[J]. 中华小儿外科杂志, 2018, 39(1): 44-49. DOI:10.3760/cma.j.issn.0253-3006.2018.01.010. Zhang MM, Ning Y, Li YC, et al. Applicationantologous liver transplantation in complex infantile hepatoblastoma:a report of one case[J]. Chin J Pediatr Surg, 2018, 39(1): 44-49. DOI:10.3760/cma.j.issn.0253-3006.2018.01.010. |
13 |
Namgoong JM, Choi JU, Hwang S, et al. Pediatric living donor liver transplantation with homograft replacement of retrohepatic inferior vena cava for advanced hepatoblastoma[J]. Ann Hepatobiliary Pancreat Surg, 2019, 23(2): 178-182. DOI:10.14701/ahbps.2019.23.2.178. |
14 |
Shinkai M, Mochizuki K, Kitagawa N, et al. Usefulness of a recanalized umbilical vein for vascular reconstruction in pediatric hepatic surgery[J]. Pediatr Surg Int, 2016, 32(6): 553-558. DOI:10.1007/s00383-016-3893-2. |
15 |
Isono K, Ohya Y, Lee KJ, et al. Pretransplant trends in alpha-fetoprotein levels as a predictor of recurrence after living donor liver transplantation for unresectable hepatoblastoma:A single-institution experience[J]. Pediatric transplantation, 2018, 22(5): e13221. DOI:10.1111/petr.13221. |
16 |
Van Dalen EC, Raphael MF, Caron HN, et al. Treatment including anthracyclines versus treatment not including anthracyclines for childhood cancer[J]. Cochrane Database Syst Rev, 2014, 4(9): Cd006647. DOI:10.1002/14651858.CD006647. |
17 |
柳龚堡, 刘百慧, 李凯, 等. C5V作为首选化疗方案治疗肝母细胞瘤效果观察[J]. 中华儿科杂志, 2015, 53(2): 119-123. DOI:10.3760/cma.j.issn.0578-1310.2015.02.011. Liu GB, Liu BH, Li K, et al. Outcome of hepatoblastoma:experience with 63 patients received chemotherapy with the regimen C5V[J]. Chinese Journal of Pediatrics, 2015, 53(2): 119-123. DOI:10.3760/cma.j.issn.0578-1310.2015.02.011. |
18 |
Katzenstein HM, Furman WL, Malogolowkin MH, et al. Upfront window vincristine/irinotecan treatment of high-risk hepatoblastoma:A report from the Children's Oncology Group AHEP0731 study committee[J]. Cancer, 2017, 123(12): 2360-2367. DOI:10.1002/cncr.30591. |
19 |
常健, 张语桐, 王立哲, 等. 顺铂单剂治疗儿童肝母细胞瘤[J]. 中华小儿外科杂志, 2011, 32(10): 737-740. DOI:10.3760/cma.j.issn.0253-3006.2011.10.005. Chang J, Zhang YT, Wang LZ, et al. Single-agent of cisplatin in pretreatment of hepatoblastoma[J]. Chinese journal of pediatric surgery, 2011, 32(10): 737-740. DOI:10.3760/cma.j.issn.0253-3006.2011.10.005. |
20 |
Wei M, Yuan X. Cisplatin-induced Ototoxicity in Children With Solid Tumor[J]. J Pediatr Hematol Oncol, 2019, 41(2): e97-e100. DOI:10.1097/mph.0000000000001282. |
21 |
Brock PR, Maibach R, Childs M, et al. Sodium Thiosulfate for Protection from Cisplatin-Induced Hearing Loss[J]. N Engl J Med, 2018, 378(25): 2376-2385. DOI:10.1056/NEJMoa1801109. |
22 |
Morcrette G, Hirsch TZ, Badour E, et al. APC germline hepatoblastomas demonstrate cisplatin-induced intratumor tertiary lymphoid structures[J]. Oncoimmunology, 2019, 8(6): e1583547. DOI:10.1080/2162402x.2019.1583547. |
23 |
Beck A, Eberherr C, Hagemann M, et al. Connectivity map identifies HDAC inhibition as a treatment option of high-risk hepatoblastoma[J]. Cancer Biol Ther, 2016, 17(11): 1168-1176. DOI:10.1080/15384047.2016.1235664. |
24 |
Zhen N, Jin L, Ma J, et al. Ginsenoside Rg1 impairs homologous recombination repair by targeting CtBP-interacting protein and sensitizes hepatoblastoma cells to DNA damage[J]. Anticancer Drugs, 2018, 29(8): 756-766. DOI:10.1097/cad.0000000000000646. |
25 |
姜程远, 卜云芳. 经导管动脉化疗栓塞术治疗巨大肝母细胞瘤疗效及安全性[J]. 现代仪器与医疗, 2017, 23(3): 23-24. DOI:10.11876/mimt201703011. Jiang CY, Bu YF. Efficacy and safety of transcranial arterial chemoembolization in the treatment of giant hepatoblastoma[J]. Modern instruments and medical treatment, 2017, 23(3): 23-24. DOI:10.11876/mimt201703011. |
26 |
Salem R, Lewandowski RJ, Mulcahy MF, et al. Radioembolization for hepatocellular carcinoma using Yttrium-90 microspheres:a comprehensive report of long-term outcomes[J]. Gastroenterology, 2010, 138(1): 52-64. DOI:10.1053/j.gastro.2009.09.006. |
27 |
Lungren MP, Towbin AJ, Roebuck DJ, et al. Role of interventional radiology in managing pediatric liver tumors:Part 1:Endovascular interventions[J]. Pediatric radiology, 2018, 48(4): 555-564. DOI:10.1007/s00247-018-4068-1. |
28 |
Liu B, Zhou L, Huang G, et al. First Experience of Ultrasound-guided Percutaneous Ablation for Recurrent Hepatoblastoma after Liver Resection in Children[J]. Scientific reports, 2015, 18(5): 16805. DOI:10.1038/srep16805. |
29 |
朱海涛, 肖现民. PI3K/Akt信号通路与小儿恶性实体肿瘤研究进展[J]. 临床小儿外科杂志, 2009, 8(6): 57-59. DOI:10.3969/j.issn.1671-6353.2009.06.020. Zhu HT, Xiao XM. Research progress of PI3K/Akt signaling pathway and malignant solid tumors in children[J]. J Clin Ped Sur, 2009, 8(6): 57-59. DOI:10.3969/j.issn.1671-6353.2009.06.020. |
30 |
Molina L, Yang H, Adebayo Michael AO, et al. mTOR inhibition affects Yap1-beta-catenin-induced hepatoblastoma growth and development[J]. Oncotarget, 2019, 10(15): 1475-1490. DOI:10.18632/oncotarget.26668. |
31 |
乔国梁.PI3K-Akt信号通路在肝母细胞瘤的作用及肝母细胞瘤预后危险因素的评估[D].北京协和医学院, 2015. Qiao GL.The role of P13K-Akt Pathway in Hepatoblastoma and Evaluation of Prognostic Risk Factors of Patients with Hepatoblastoma[D].Peking union medical college, 2015. |
32 |
Zhang C, Jia X, Wang K, et al. Polyphyllin Ⅶ Induces an Autophagic Cell Death by Activation of the JNK Pathway and Inhibition of PI3K/AKT/mTOR Pathway in HepG2 Cells[J]. PloS one, 2016, 11(1): e0147405. DOI:10.1371/journal.pone.0147405. |
33 |
Fu H, Zhang J, Pan T, et al. miR378a enhances the sensitivity of liver cancer to sorafenib by targeting VEGFR, PDGFRbeta and cRaf[J]. Molecular medicine reports, 2018, 17(3): 4581-4588. DOI:10.3892/mmr.2018.8390. |
34 |
Cui Y, Lu P, Song G, et al. Involvement of PI3K/Akt, ERK and p38 signaling pathways in emodin-mediated extrinsic and intrinsic human hepatoblastoma cell apoptosis[J]. Food Chem Toxicol, 2016(92): 26-37. DOI:10.1016/j.fct.2016.03.013. |
35 |
Stafman LL, Williams AP, Marayati R, et al. PP2A activation alone and in combination with cisplatin decreases cell growth and tumor formation in human HuH6 hepatoblastoma cells[J]. PloS one, 2019, 14(4): e0214469. DOI:10.1371/journal.pone.0214469. |
36 |
Deng S, Tang S, Zhang S, et al. Furazolidone induces apoptosis through activating reactive oxygen species-dependent mitochondrial signaling pathway and suppressing PI3K/Akt signaling pathway in HepG2 cells[J]. Food Chem Toxicol, 2015(75): 173-186. DOI:10.1016/j.fct.2014.11.019. |
37 |
Perugorria MJ, Olaizola P, Labiano I, et al. Wnt-beta-catenin signalling in liver development, health and disease[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 121-136. DOI:10.1038/s41575-018-0075-9. |
38 |
Indersie E, Lesjean S, Hooks KB, et al. MicroRNA therapy inhibits hepatoblastoma growth in vivo by targeting beta-catenin and Wnt signaling[J]. Hepatology communications, 2017, 1(2): 168-183. DOI:10.1002/hep4.1029. |
39 |
Ellerkamp V, Lieber J, Nagel C, et al. Pharmacological inhibition of beta-catenin in hepatoblastoma cells[J]. Pediatric surgery international, 2013, 29(2): 141-149. DOI:10.1007/s00383-012-3237-9. |
40 |
Godeke J, Maier S, Eichenmuller M, et al. Epigallocatechin-3-gallate inhibits hepatoblastoma growth by reactivating the Wnt inhibitor SFRP1[J]. Nutrition and cancer, 2013, 65(8): 1200-1207. DOI:10.1080/01635581.2013.828085. |
41 |
Munoz M, Rosso M, Covenas R. The NK-1 receptor:a new target in cancer therapy[J]. Curr Drug Targets, 2011, 12(6): 909-921. DOI:10.2174/138945011795528796. |
42 |
Berger M, Neth O, Ilmer M, et al. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo[J]. Journal of hepatology, 2014, 60(5): 985-994. DOI:10.1016/j.jhep.2013.12.024. |
43 |
Ilmer M, Garnier A, Vykoukal J, et al. Targeting the Neurokinin-1 Receptor Compromises Canonical Wnt Signaling in Hepatoblastoma[J]. Molecular cancer therapeutics, 2015, 14(12): 2712-2721. DOI:10.1158/1535-7163.Mct-15-0206. |
44 |
Garnier A, Ilmer M, Kappler R, et al. Therapeutic Innovations for Targeting Hepatoblastoma[J]. Anticancer research, 2016, 36(11): 5577-5792. DOI:10.21873/anticanres.11143. |
45 |
Baeuerle PA, Gires O. EpCAM (CD326) finding its role in cancer[J]. British journal of cancer, 2007, 96(3): 417-423. DOI:10.1038/sj.bjc.6603494. |
46 |
Armeanu-Ebinger S, Hoh A, Wenz J, et al. Targeting EpCAM (CD326) for immunotherapy in hepatoblastoma[J]. Oncoimmunology, 2013, 2(1): e22620. DOI:10.4161/onci.22620. |
47 |
Ortiz MV, Roberts SS, Glade Bender J, et al. Immunotherapeutic Targeting of GPC3 in Pediatric Solid Embryonal Tumors[J]. Front Oncol, 2019, 26(9): 108. DOI:10.3389/fonc.2019.00108. |
48 |
Tsuchiya N, Hosono A, Yoshikawa T, et al. Phase I study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors[J]. Oncoimmunology, 2017, 7(1): e1377872. DOI:10.1080/2162402x.2017.1377872. |
49 |
Shimizu Y, Suzuki T, Yoshikawa T, et al. Next-Generation Cancer Immunotherapy Targeting Glypican-3[J]. Front Oncol, 2019, 10(9): 248. DOI:10.3389/fonc.2019.00248. |