[1]邹倩倩,蔡春泉.糖尿病妊娠诱发神经管缺陷发生机制的研究进展[J].临床小儿外科杂志,2019,18(09):789-794.[doi:10.3969/j.issn.1671-6353.2019.09.017]
 Zou Qianqian,Cai Chunquan.Research advances in occurring mechanism of neural tube defects induced by diabetic pregnancy[J].Journal of Clinical Pediatric Surgery,2019,18(09):789-794.[doi:10.3969/j.issn.1671-6353.2019.09.017]
点击复制

糖尿病妊娠诱发神经管缺陷发生机制的研究进展

参考文献/References:

1 Wang L,Chang S,Wang Z,et al.Altered GNAS imprinting due to folic acid deficiency contributes to poor embryo development and may lead to neural tube defects[J].Oncotarget,2017,8(67):110797-110810.DOI:10.18632/oncotarget.22731.
2 Zhao Z,Cao L,Reece EA.Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects[J].Proc Natl Acad Sci USA,2017,114(17):4489-4494.DOI:10.1073/pnas.1616119114.
3 髙俜娉,鲍南.神经管缺陷的病因、治疗及未来展望[J].临床小儿外科杂志,2013,12(2):146-148.DOI:10.3969/j.issn.1671-6353.2013.02.022. Gao PP,Bao N.Causes,treatment and future prospects of neural tube defects[J].J Clin Ped Sur,2013,12(02):146-148.DOI:10.3969/j.issn.1671-6353.2013.02.022.
4 Organization WH.Diabetes country profiles 2016-China,2016[DB/OL].http://www.who.int/diabetes/country-profiles/chn_zh.pdf?ua=1.
5 Kim G,Cao L,Reece EA,et al.Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy[J].Sci Rep,2017,7(1):11107.DOI:10.1038/s41598-017-11655-6.
6 Wang F,Xu C,Reece EA,et al.Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy[J].Nat Commun,2017,8:15182.DOI:10.1038/ncomms15182.
7 Wu Y,Wang F,Fu M,et al.Cellular stress,excessive apoptosis,and the effect of metformin in a mouse model of type 2 diabetic embryopathy[J].Diabetes,2015,64(7):2526-2536.DOI:10.2337/db14-1683.
8 Xu C,Li X,Wang F,et al.Trehalose prevents neural tube defects by correcting maternal diabetes-suppressed autophagy and neurogenesis[J].Am J Physiol Endocrinol Metab,2013,305(5):E667-E678.DOI:10.1152/ajpendo.00185.2013.
9 Ornoy A,Reece EA,Pavlinkova G,et al.Effect of maternal diabetes on the embryo,fetus,and children:congenital anomalies,genetic and epigenetic changes and developmental outcomes[J].Birth Defects Res C Embryo Today,2015,105(1):53-72.DOI:10.1002/bdrc.21090.
10 李旭,梁平.儿童神经管缺陷的病因及危险因素分析[J].临床小儿外科杂志,2015,14(3):241-243.DOI:10.3969/j.issn.1671-6353.2015.03.022. Li X,Liang P.Analysis of etiologies and risk factors of neural tube defects in children[J].J Clin Ped Sur,2015,14(3):241-243.DOI:10.3969/j.issn.1671-6353.2015.03.022.
11 García-Sanz P,Mirasierra M,Moratalla R,et al.Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy[J].Sci Rep,2017,7(1):389.DOI:10.1038/s41598-017-00334-1.
12 Zhao Y,Dong D,Reece EA,et al.Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy[J].Am J Obstet Gynecol,2018,218(1):136.e1-136.e10.DOI:10.1016/j.ajog.2017.10.040.
13 Yang P,Reece EA,Wang F,et al.Decoding the oxidative stress hypothesis in diabetic embryopathy through proapoptotic kinase signaling[J].Am J Obstet Gynecol,2015,212(5):569-579.DOI:10.1016/j.ajog.2014.11.036.
14 Cao L,Tan C,Meng F,et al.Amelioration of intracellular stress and reduction of neural tube defects in embryos of diabetic mice by phytochemical quercetin[J].Sci Rep,2016,6:21491.DOI:10.1038/srep21491.
15 Ghimire K,Altmann HM,Straub AC,et al.Nitric oxide:what’s new to NO[J].Am J Physiol Cell Physiol,2017,312(3):C254-C262.DOI:10.1152/ajpcell.00315.2016.
16 Kumar S,Stokes J,Singh UP,et al.Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells[J].Tumour Biol,2017,39(10):1010428317715039.DOI:10.1177/1010428317715039.
17 Zhao Z,Reece EA.New concepts in diabetic embryopathy[J].Clin Lab Med,2013,33(2):207-233.DOI:10.1016/j.cll.2013.03.017.
18 Stepien KM,Heaton R,Rankin S,et al.Evidence of oxidative stress and secondary mitochondrial dysfunction in metabolic and non-metabolic disorders[J].J Clin Med,2017,6(7):E71.DOI:10.3390/jcm6070071.
19 Zhong J,Xu C,Gabbay-Benziv R,et al.Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects,restores mitochondrial function and suppresses cellular stress in diabetic embryopathy[J].Free Radic Biol Med,2016,96:234-244.DOI:10.1016/j.freeradbiomed.2016.04.030.
20 Dong D,Reece EA,Yang P.The Nrf2 activator vinylsulfone reduces high glucose-induced neural tube defects by suppressing cellular stress and apoptosis[J].Reprod Sci,2016,23(8):993-1000.DOI:10.1177/1933719115625846.
21 Wang F,Fisher SA,Zhong J,et al.Superoxide dismutase 1 in vivo ameliorates maternal diabetes mellitus-induced apoptosis and heart defects through restoration of impaired Wnt signaling[J].Circ Cardiovasc Genet,2015,8(5):665-676.DOI:10.1161/CIRCGENETICS.115.001138.
22 Dong D,Reece EA,Lin X,et al.New development of the yolk sac theory in diabetic embryopathy:molecular mechanism and link to structural birth defects[J].Am J Obstet Gynecol,2016,214(2):192-202.DOI:10.1016/j.ajog.2015.09.082.
23 Chen X,Shen WB,Yang P,et al.High glucose inhibits neural stem cell differentiation through oxidative stress and endoplasmic reticulum stress[J].Stem Cells Dev,2018,27(11):745-755.DOI:10.1089/scd.2017.0203.
24 Cao L,Liu P,Gill K,et al.Identification of novel cell survival regulation in diabetic embryopathy via phospholipidomic profiling[J].Biochem Biophys Res Commun,2016,470(3):599-605.DOI:10.1016/j.bbrc.2016.01.098.
25 Pani L,Horal M,Loeken MR.Polymorphic Susceptibility to the Molecular Causes of Neural Tube Defects During Diabetic Embryopathy[J].Diabetes,2002,51(9):2871.DOI:10.2337/diabetes.51.9.2871.
26 Bragoszewski P,Turek M,Chacinska A.Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system[J].Open Biol,2017,7(4).DOI:10.1098/rsob.170007.
27 Colla E,Panattoni G,Ricci A,et al.Toxic properties of microsome-associated alpha-synuclein species in mouse primary neurons[J].Neurobiol Dis,2018,111:36-47.DOI:10.1016/j.nbd.2017.12.004.
28 Samuel F,Flavin WP,Iqbal S,et al.Effects of Serine 129 Phosphorylation on α-Synuclein Aggregation,Membrane Association,and Internalization[J].J Biol Chem,2016,291(9):4374-4385.DOI:10.1074/jbc.M115.705095.
29 Dowhan W.Understanding phospholipid function:Why are there so many lipids[J].J Biol Chem,2017,292(26):10755-10766.DOI:10.1074/jbc.X117.794891.
30 Leslie CC.Cytosolic phospholipase A:physiological function and role in disease[J].J Lipid Res,2015,56(8):1386-402.DOI:10.1194/jlr.R057588.
31 Hsieh HL,Yang CM.Role of redox signaling in neuroinflammation and neurodegenerative diseases[J].Biomed Res Int,2013,2013:484613.DOI:10.1155/2013/484613.
32 Seo JB,Jung SR,Huang W,et al.Charge shielding of PIP2 by cations regulates enzyme activity of phospholipase C[J].PLoS One,2015,10(12):e0144432.DOI:10.1371/journal.pone.0144432.
33 Hemmings BA,Restuccia DF.The PI3K-PKB/Akt pathway[J].Cold Spring Harb Perspect Biol,2015,7(4)pii:a026609.DOI:10.1101/cshperspect.a026609.
34 Walinda E,Morimoto D,Sugase K,et al.Dual function of phosphoubiquitin in E3 activation of Parkin[J].J Biol Chem,2016,291(32):16879-16891.DOI:10.1074/jbc.M116.728600.
35 Gupta A,Anjomani-Virmouni S,Koundouros N,et al.PARK2 loss promotes cancer progression via redox-mediated inactivation of PTEN[J].Mol Cell Oncol,2017,4(6):e1329692.DOI:10.1080/23723556.2017.1329692.
36 Ham SJ,Lee SY,Song S,et al.Interaction between RING1(R1) and the ubiquitin-like (UBL) domains Is critical for the regulation of Parkin activity[J].J Biol Chem,2016,291(4):1803-1816.DOI:10.1074/jbc.M115.687319.
37 Han JY,Kang MJ,Kim KH,et al.Nitric oxide induction of Parkin translocation in PTEN-induced putative kinase 1(PINK1) deficiency:functional role of neuronal nitric oxide synthase during mitophagy[J].J Biol Chem,2015,290(16):10325-10335.DOI:10.1074/jbc.M114.624767.
38 Lee S,Zhang C,Liu X.Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses[J].J Biol Chem,2015,290(2):904-917.DOI:10.1074/jbc.M114.606798.
39 Zhang X,Wan JQ,Tong XP.Potassium channel dysfunction in neurons and astrocytes in Huntington’s disease[J].CNS Neurosci Ther,2018,24(4):311-318.DOI:10.1111/cns.12804.
40 Katsuragi Y,Ichimura Y,Komatsu M.p62/SQSTM1 functions as a signaling hub and an autophagy adaptor[J].FEBS J,2015,282(24):4672-4678.DOI:10.1111/febs.13540.
41 Kulkarni VV,Maday S.Compartment-specific dynamics and functions of autophagy in neurons[J].Dev Neurobiol,2018,78(3):298-310.DOI:10.1002/dneu.22562.
42 Ravanan P,Srikumar IF,Talwar P.Autophagy:The spotlight for cellular stress responses[J].Life Sci,2017,188:53-67.DOI:10.1016/j.lfs.2017.08.029.
43 Avagliano L,Doi P,Tosi D,et al.Cell death and cell proliferation in human spina bifida[J].Birth Defects Res A Clin Mol Teratol,2016,106(2):104-113 DOI:10.1002/bdra.23466.
44 Lin S,Ren A,Wang L,et al.Oxidative stress and apoptosis in benzo[a]pyrene-induced neural tube defects[J].Free Radic Biol Med,2018,116:149-158.DOI:10.1016/j.freeradbiomed.2018.01.004.
45 赵美玲,季宇彬,毕明刚.细胞凋亡的死亡受体途径[J].黑龙江医药,2013,26(2):196-199. DOI:1006-2882(2013)02-196-04. Zhao ML,Ji YB,Bi MG.Death receptor pathway of cell apoptosis[J].Heilongjiang Medicine Journal,2013,26(2):196-199. DOI:1006-2882(2013)02-196-04.
46 Liang Y,Xu W,Liu S,et al.N-acetyl-glucosamine sensitizes non-small cell lung cancer cells to TRAIL-induced apoptosis by activating death receptor 5[J].Cell Physiol Biochem,2018,45(5):2054-2070.DOI:10.1159/000488042.
47 Giampazolias E,Tait SW.Mitochondria and the hallmarks of cancer[J].FEBS J,2016,283(5):803-14.DOI:10.1159/000488042.
48 Zhang M,Zheng J,Nussinov R,et al.Release of cytochrome C from Bax pores at the mitochondrial membrane[J].Sci Rep,2017,7(1):2635.DOI:10.1038/s41598-017-02825-7.
49 Bhola PD,Letai A.Mitochondria-judges and executioners of cell death sentences[J].Mol Cell,2016,61(5):695-704.DOI:10.1016/j.molcel.2016.02.019.
50 Ge HW,Hu WW,Ma LL,et al.Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats[J].Physiol Behav,2015,151:16-23.DOI:10.1016/j.physbeh.2015.07.008.
51 Kong FJ,Ma LL,Guo JJ,et al.Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice[J].Clin Sci,2018,132(1):111-125.DOI:10.1042/CS20171432.
52 Chen X,Li X,Zhang W,et al.Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-κB pathway[J].Metabolism,2018,83:256-270.DOI:10.1016/j.metabol.2018.03.004.

相似文献/References:

[1]王瑞红,左健,孙子兰,等.新生儿先天性动脉导管未闭与新生儿母亲糖尿病相关性的Meta分析[J].临床小儿外科杂志,2022,21(11):1067.[doi:10.3760/cma.j.cn101785-202109037-013]
 Wang Ruihong,Zuo Jian,Sun Zilan,et al.Correlation between neonatal patent ductus arteriosus and infants of diabetic mothers: a Meta-analysis[J].Journal of Clinical Pediatric Surgery,2022,21(09):1067.[doi:10.3760/cma.j.cn101785-202109037-013]

备注/Memo

收稿日期:2018-04-04。
基金项目:国家自然科学基金(编号:81771589);天津市重大疾病防治科技重大专项(编号:18ZXDBSY00170);天津市卫生行业重点攻关项目(编号:16KG166)
通讯作者:蔡春泉,Email:tjpns@126.com

更新日期/Last Update: 1900-01-01